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Abstract

This thesis deals with a particular problem out of the research field of computational
fluid dynamics, the numerical simulation of fluids containing soluted rigid particles.
Such problems arise within a variety of applied sciences, such as medicine, ecology
and engineering and need to be studied in detail in three-dimensions. So far most
scientific publications on this topic either dealt with 2D phenomena only or the be-
havior of a very few particles in 3D. The reason for this being most of all performance
constraints of the used simulation techniques and hardware.

This thesis aims to accomplish a high-performance simulation of a large number of
particles in 3D by using co-processor technology. The landscape of such accelerators
is reviewed thoroughly and assessed according to their versatility in scientific com-
puting in general and the above problem in particular. Graphics processing units
(GPU) are identified as technology of high potential, promising powerful computing
abilities while being increasingly easier to program.

In order to fully benefit from the advantages of this new kind of hardware, the
complete simulation development process is reviewed. A model for particulate flows
is derived from the very basis of continuum mechanics leading to a constraint Navier-
Stokes problem. The solving methodology is chosen to fit the GPU’s architecture
and achieve best possible performance results.

The implementation of the numerical method is done on the basis of intensive eval-
uation of the GPU used, by means of key scientific computation kernels. Final
benchmarks of components of the particulate flow simulation demonstrate the suc-
cessful use of GPUs to accelerate the computation by at least a factors of 3 and up
to 20 in selected sub-routines.
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1. Introduction

This thesis deals with the numerical simulation of particulate flows, i.e. the motion of
rigid particles in viscous incompressible fluids. Clearly, the flow of fluids is influenced
by the suspended particles, while the particle movement is affected likewise by while
fluid phase. In this regard, particulate flows are a particular case of fluid-structure
interaction problems and a major field of research in theoretical as well applied
fluid dynamics. The combined motion of fluid and structure is described by highly
coupled systems of differential equations whose solution in an efficient and accurate
way is a challenging problem of computational fluid dynamics (CFD).

A variety of models have been proposed for the described problem and of course, the
choice of an adequate simulation method depends mainly on the simulation specifi-
cations. In any case, a high simulation performance is always of importance, thereby
turning attention to the hardware: different hardware architectures favor different
methods and programming techniques, such that commodity implementations may
not suite current developments in hardware architecture.

In order to design a simulation method abreast with the latest developments in com-
puter hardware, a deep insight into current chip design and computer architecture
is needed for an assessment of suitability for the given purpose. In this thesis, a
comparative survey of state-of-the-art co-processor technology is included, identify-
ing graphics processing units (GPUs), as promising addition to scientific computing
and qualified for the implementation of a particulate flow simulation.

As with every new technology, theoretical performance estimations of accelerator
hardware may differ widely from the performance achieved in real-world applica-
tions. In order to successfully develop a simulation routine for execution on GPUs,
thorough benchmarks are needed to identify possible bottlenecks.

Only on the basis of this expensive preliminary work, a design for a hardware-fitted
particulate flow simulation algorithm can be developed and implemented. As pure
data-generation is only one part of the simulation, this thesis deals as a round-up
also with the problem of effectively visualizing particulate flows.
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1.1 Motivation

Particulate flows occur in a huge variety of forms in large-scale as well as small-scale
phenomena and am subject of research of many different sciences:

Hydrology explores transport processes in water, e.g. of nutrients, pesticides, dis-
solved and soluted solids and sediments. Complex phenomena, such as erosion
and particle sedimentation in river beds need to be studied theoretically by
means of mathematical modeling.

Ecology is another discipline in the group of environmental sciences, that aim to
understand the many interactions of physical, chemical and biological processes
happing in nature. One socially very important field of study of ecology is for
example pollutant distribution in air and water - describable as a particulate
flow.

Medicine is interested in small-scale phenomena such as atherosclerotic deposits
in human blood vessels or the impact of respiratoral dust on the lung function,
again examples of particulate flows.

Engineering, especially with a chemical and pharmaceutical focus, depends on
the analysis of sophisticated mixing, drying and transport processes of differ-
ent kinds. To understand the nature of the occurring phenomena and give
predictions on their behavior under different conditions, again mathematical
modeling of the underlying physics and chemistry is needed.

All these examples are taken from real-world applications and thus require a three
dimensional study of the behavior of the respective fluids and partials.

The simulation by means of numerical mathematics is an computationally inten-
sive task, especially when done in 3D. Different techniques for the simulation of
particulate flows have been developed so far, the can most important two being:

• Arbitrary Lagrangean Euler (ALE) techniques and

• Fictitious Domain Methods (FDM).

The main difference between these two methods is that FDMs may use a fixed grid
during the whole simulation while ALE techniques alter their meshes with each
time step and require a complete re-meshing when the mesh gets too distorted after
several steps.

The choice of simulation method depends firstly on the simulation specifications,
both types of techniques have advantages over the other. In order to achieve a
high simulation performance, the hardware aspect has to be kept in mind as well.
As mentioned before, different hardware architectures favor different programming
styles, such that traditional implementations may suffer from severe performance
losses because of not considering developments in hardware design.
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Namely these developments are multi-core and accelerator technologies. With fre-
quency scaling of CPUs being limited by current leakage and heat production, sev-
eral heavy-weight CPU cores, clocked at a reasonable rate, have been combined on
a single chip with additional caches facilitating data exchange. The lower clock fre-
quencies translate to less power consumption, while the whole multi-core CPU nev-
ertheless achieves a higher over-all performance, when the cores are used in parallel.
Currently only six-core CPUs are available, as the large size of these multi-purpose
cores limits further scaling as well.
An alternative are simpler and smaller computing elements that can be combined
in a larger number. This is the approach of most accelerator technologies, that
accompany a conventional CPU and take over computational intensive tasks. Espe-
cially interesting in this field are graphics processing units (GPUs) that have been
used exemplary in science in the past and grew in importance when outperforming
state-of-the-art CPUs in special applications.

Clearly, it is of high interest to examine the new possibilities of GPU acceleration
in numerical mathematics and its impact on the choice of numerical method and
algorithm design.

1.2 Goals

The purpose of this thesis is to derive, implement and evaluate a numerical simula-
tion of particulate flows with respect to current hardware developments.

The goals for the simulation are to trace a very high number of particles in viscous
flow in three dimensions. It shall be time-dependent and achieve significant perfor-
mance improvements compared to conventional implementations while conserving
accuracy as much as possible.

The thesis further aims to give insight into the landscape of current accelerator
technologies and their applicability in scientific computing. Special focus is again
given to GPUs, namely the NVIDIA GT200 GPU, and their programming models.

The possibilities of GPU acceleration in scientific computing shall be assessed by
thorough evaluation of this hardware/software combination using basic kernels, that
constitute the main parts of most scientific algorithms.

This evaluation is the basis for designing the simulation algorithm with highest
possible hardware efficiency. The task of simulating particulate flows shall give an
evaluation of how GPUs perform in real-world applications of computational fluid
dynamics.

Summing up, this thesis aims to solve the problem of simulating particulate flows
from beginning to end: starting with a physical problem, a mathematical descrip-
tion is derived and implemented using newest hardware/software combinations and
gained experimental results are visualized.
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1.3 Outline

This thesis addresses the problem in the following structure:

A model for particulate flows is derived in chapter two. In order to achieve
the goals of a high performance simulation of many particles, a fictitious domain
method is derived and prepared for implementation.

Accelerator technology is reviewed in chapter three. GPUs are put into context
with other available technologies, comparing their advantages and disadvantages.
The programming model CUDA of the latest NVIDIA GPUs is presented as well.

Thorough hardware evaluation is conducted in chapter four. Basic scientific
kernels, such as vector and matrix operations, are used to determine the performance
of the GPU. It is furthermore reviewed what effort has to be undertaken to achieve
it.

The numerical methods applied to solve the model derived in chapter two are
explained in chapter five. The methods are chosen to fit the hardware specifications
explained in chapter three and the performance results gained in chapter four.

Implementation details are given in chapter six. It is explained, how the compu-
tational problems of chapter five can be efficiently solved with the CUDA program-
ming model. The achieved performance of these implementations is also reviewed
in this chapter. Furthermore an example visualization technique is described and
presented.

Conclusions are summed up in chapter seven. Furthermore, an outlook is given
on how the problems dealt with in this thesis can be addressed in the future and
how further hardware developments might influence the approach taken.

1.4 Acknowledgement

I wish to thank my thesis adviso Professor Vincent Heuveline for allowing this paper
to be a product of my own interest and letting me explore this fascinating research
field of particulate flows as a whole. I would like to further thank Prof. Heuveline
for encouraging me during the course of my studies, keeping an eye on the structure
of my work and steering me in the right directions, when necessary. Last but not
least, this thesis would not have been possible without him providing access to the
newest hardware technology available.

I am most grateful to Andrea Otzen and Björn Rocker for the many consultations
we had along the way, for always suspending their own work, taking the time for a
discussion and giving most valuable advice.

Finally, I wish to express my love and gratitude to all my family and friends. Par-
ticularly I like to thank my parents Doris and Edgar for their encouragement and
their patience that allowed me to explore my interests and talents. Without them,
this thesis would not have been written.



2. A model of moving rigid
particles in viscous
incompressible flow

2.1 Introduction and problem formulation

In this chapter, a model for the simulation of particulate flows is presented. The
approach chosen is a direct numerical simulation, i.e. equations for the flow around
the particles and the particle motion are derived from fundamental physical princi-
ples. A serious problem is the interaction of walls and particles and several particles
with each other: here, a length scale might occur which is significantly smaller then
the particle size, making it numerically difficult to apply the aforementioned gen-
eral physical model. A non-direct simulation of the micro-scale phenomena will be
inevitable in order to achieve the goals of this thesis.

We consider a fixed bounded domain Ω1, bounded externally by Γ, filled with an
incompressible Newtonian liquid of density ρf and viscosity µ. In this liquid we
consider n rigid particles occupying a domain Ω2 =

⋃n
i=1 Ω2,i with densities ρi, i =

1, . . . , n. Furthermore we denote the interface between Ω1 and Ω2 by Σ and the
entire by domain Ω = Ω1 ∪ Ω2.

Because of the particles’ movement, Ω1 and Ω2 are time dependent and should rather
be denoted as Ω1(t) and Ω2(t). As the argument is obvious, it will be omitted for
reasons of simplicity.

In the following sections, a model for this problem is derived and different possible
numerical solution methods are presented. A particular fictitious domain method is
further pursued as it offers several advantages in reference to the later implementa-
tion.
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Figure 2.1: Geometry of the problem.

2.2 Fundamental physical principles

2.2.1 Continuum mechanics

Although matter is formed of atomic and subatomic particles, its behavior can be
described and accurately predicted using the continuum theory , which neglects this
molecular structure. Solids and fluids are thought to have no empty spaces, i.e. they
are indefinitely divisible. Thus according to this theory, a particle in continuum has
infinitesimal volume and in its neighborhood are always other particles.

In the case of flows, it is known that this model fails for length scales of the or-
der of the mean free path of the molecules taking part in the flow. The relation
of the mean free path to the smallest length scale appearing in the flow is called
Knudsen number. A small Knudsen number depicts, that the scale of the studied
phenomenon is sufficiently large such that the considered volume elements contain
enough particles to neglect fluctuations of the physical quantities. In the case of air
under atmospheric conditions, the mean free path is approx. 10−7m and the smallest
length scale is usually not lower then 10−4m. The Knudsen number 10−3 is much
smaller then one in this case, such that the continuum hypothesis is a reliable basis
[Pope00].

2.2.2 Newton’s laws of motion

The three laws of motion describe the relations between the forces acting on a massive
particle and its motion. The formulation given here is taken from [Batr06].

Newton’s first law of motion
In an inertial frame of reference, a free particle continuous in its state of rest or of
uniform motion.
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Newton’s second law of motion
In an inertial frame, the rate of change of linear momentum of a particle equals the
resultant force acting on it. That is

d

dt
Mu = F, (2.1)

where the momentum Mu is the product of the (constant) mass and velocity of the
particle. F is the (vector) sum of all forces acting on the particle.

Newton’s third law of motion
To every action, there is an equal and opposite reaction.

The inertial frame, defined by the first law of motion is one in which this law holds.
Here, the frame shall be spun by coordinate axis fixed to Earth without introducing
an error. The forces acting in the second law can be divided in two groups, body
forces and surface forces.

Body forces act on all particles in a body and are caused by some external body.
This force is measured as a force per unit mass or per unit volume at the
present location of a point in the continuum.

Surface forces are contact forces that act across a surface of the body. The inten-
sity of a force acting on a unit area on the surface is also known as traction or
stress vector.

2.2.3 Kinematics from an Eulerian and
Lagrangean point of view

The referential description (also: material description) is mostly attributed to La-
grange1, while the spatial description is usually attributed to Euler2, although both
were aware of either description. There may be a distinction in up to four descrip-
tions [Malv69], but only the aforementioned ones shall be described here:

In the referential description, the velocity vector u of a particle depends on the
coordinates in the reference configuration X1, X2, X3 (the material coordinates in
three dimensions) and the time t:

u = u(X1, X2, X3, t). (2.2)

The spatial description fixes the observers position, such that u may be expressed
as function of the spatial coordinates x1, x2 and x3 and time t:

u = u(x1, x2, x3, t), (2.3)

where the spatial coordinates depend on the material coordinates as

x = x(X, t), (2.4)

1 Joseph Louis Lagrange(⋆ 1736, † 1813) 2 Leonhard Euler, (⋆ 1707, † 1783)
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with x(X, t0) = X = (X1, X2, X3)
T at the reference time t0.

The material time derivative(also: substantial time derivative)
D

Dt
is the time rate

of change of a quantity. Applied to velocity, we get an expression of the acceleration.
In Lagrangian description it is equivalent to the total derivative operator

Du

Dt
(X, t) =

du

dt
(X, t). (2.5)

For the spatial description we get by (2.4) and the chain rule

Du

Dt
(x, t) =

∂u

∂t
+
∂u

∂x

∂x

∂t
=
∂u

∂t
+ u · ∇u, (2.6)

an acceleration consisting of a local time derivative and a spatial rate of change.

A connection between the referential and spacial description is given by the Reynolds3

transport theorem, that is given here without proof:

d

dt

∫

Ω

f(x, t) dx =

∫

Ω

∂

∂t
f(x, t) + (∇ · f(x, t))u dx, (2.7)

where f is a general space-time dependent field and u is the velocity of movement
of the domain Ω.

2.3 Governing equations

2.3.1 Fluid motion

For the derivation of the Navier-Stokes equations describing incompressible flow in
a Newtonian fluid, we consider a subdomain ω of Ω1 with boundary γ. This element
of fluid moves with the flow, i.e. the referential description is used here.
As we consider an incompressible fluid, i.e. a fluid for which the volume of any
element of fluid is time invariant, it holds for ω, that

d

dt

∫

ω

dx = 0. (2.8)

By applying (2.7), we can rewrite this into

0 =
d

dt

∫

ω

dx =

∫

ω

∇ · uf dx,

with uf being the fluid velocity with respect to ω.

As this holds for any ω, we get the following incompressibility condition:

∇ · uf = 0. (2.9)

3 Osborne Reynolds(⋆ 1842, † 1912)
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Moving on, we now apply Newton’s second law (2.1)

d

dt
Muf = F

to the same element ω.
Since the total mass of the fluid is

∫

ω
ρf dx, we can expand this to

d

dt

∫

ω

ρfuf dx =

∫

ω

ρf f dx +

∫

γ

S ds. (2.10)

where f denotes a density of volume forces per mass unit and S denotes a density
of surface forces per surface unit. Assuming that the only external force acting on
our system is gravity, we can set f = g. On the other hand, as the influence of
gravity only depends on the density of the phase, we can omit the gravity term for
the fluid and apply the gravity force only for the particles in correspondence with
their density difference compared to the fluid phase.

It follows from, e.g., [GuHP91] that S takes the form

S = σn, (2.11)

where σ is the symmetric stress tensor that acts on the outward unit normal vector
n. This action can be broken down further into inviscid and viscous stress, such
that

σ = −pI + τ, (2.12)

where p is the pressure, I the identity tensor and τ the viscous stress tensor, which
in the case of a Newtonian fluid takes the form

τ = µ(∇uf + (∇uf)
T ), (2.13)

with µ being the constant viscosity coefficient .

Going on and inserting (2.11) into (2.10) yields

d

dt

∫

ω

ρfuf dx =

∫

γ

σ · ds.

Applying the divergence theorem on the right side and the transport theorem (2.7)
on the left, we obtain

∫

ω

∂

∂t
(ρfuf ) + (∇ · ρfuf)uf dx =

∫

ω

∇ · σ dx.

Since only an incompressible fluid is considered, ρf is constant and can be placed in
front:

∫

ω

ρf

(
∂uf

∂t
+ (∇ · uf )uf

)

dx =

∫

ω

∇ · σ dx.
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Replacing the term in parentheses by the material time derivative and inserting
(2.12) and (2.13) result in

∫

ω

ρf
Duf

Dt
dx =

∫

ω

−∇p + ∇ · (µ(∇uf + (∇uf )
T )) dx.

We then use that ∇ · (∇u)T = ∇(∇ · u) = ∇ · 0 = 0 and get by rearranging
∫

ω

ρf
Duf

Dt
+ ∇p− µ∇2uf) dx.

As ω was chosen arbitrarily, this implies the following momentum equation (2.14a),
that, together with (2.9), forms the Navier-Stokes equations for the considered fluid:







ρf
Duf

Dt
+ ∇p− µ∇2uf = 0 in Ω1, (2.14a)

∇ · uf = 0 in Ω1. (2.14b)

2.3.2 Rigid body motion

Let Xi be the linear position of the center of mass of the ith particle and θi its
angular position. Then the translational velocity Ui of the ith particle and its
angular velocity ωi are obtained by the following kinematic equations







dXi

dt
= Ui, (2.15a)

dθi

dt
= ωi. (2.15b)

As we are only considering rigid bodies that undergo no deformation, the whole
motion of any point X ∈ Ω2,i can be described by

ui(x) = Ui + ωi × (x − Xi). (2.16)

In order to analyze the behavior within the system, we start again with Newton’s
second law:

d

dt

∫

Ω2,i

ρiui dx =

∫

Ω2,i

ρif dx +

∫

γ

S ds.

The body forces f consist not only of gravity g any more, but also of forces c acting
in the case of collisions. As stated before, we only consider the gravity to be acting
according to the mass difference between the particle and a fluid of the same volume.
Hence we replace the scaling factor ρi by ρi − ρf .

The surface forces S are now hydrodynamic interaction forces with the surrounding
fluid, that can be set S = σn as the fluid was considered to be Newtonian. The
particles are assumed to be smooth, such that there are no tangential collision forces
acting on them. Transforming the derivative as before, the equation reads now

∫

Ω2,i

ρi
Dui

Dt
dx =

∫

Ω2,i

(ρi − ρf )g + c + ∇ · σ dx. (2.17)

The equation can be further simplified by inserting (2.16), what will be done in a
later step.
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2.3.3 Initial and boundary conditions

The problem requires an initial condition for the velocities, e.g. in the form of







uf |t=0 = uf,0 in Ω1 (2.18a)

Ui|t=0 = Ui,0 in Ω2,i (2.18b)

ωi|t=0 = ωi,0 in Ω2,i. (2.18c)

For the external boundary, only homogeneous Dirichlet conditions are required,

uf |Γ = 0,

while on the internal boundary Σ no-slip conditions for the velocity are presumed,
i.e. there is no difference in the particles’ and the fluid’s velocity at the boundary:

uf = ui = Ui + ωi × (x − Xi) on ∂Ω2,i (2.19)

2.3.4 Collision handling

The accurate modeling of collisions is a very complicated problem. When two bodies
approach each other, a thin fluid film is formed in between them that introduces a
new spatial scale related to the film thickness. This scale can only be resolved by
enormous grid refinement in space and time, what is currently incompatible with
the computational possibilities of the hardware.

One implementable technique is given by sub-grid modeling , which results in a sort
of lubrication force. The following models are taken from [VeMN07] and distinguish
between particle-particle and particle-wall collisions.

• Particle-particle collision If Xi and Xj are the centroidal coordinates of
the ith and jth particle and ri and rj their respective radii, then a collision
took place if for the updated positions holds:

ε ≤ si,j := |Xi − Xj| − (ri + rj),

where ε is the minimum separation distance, i.e. the maximum allowed thick-
ness of the film between any two particles. In this case, the particles are
moved alongside the line connecting the centroids at distances depending on
the masses of the particles involved:

∆ri =
Mj(ε− si,j)

Mi +Mj
, ∆rj =

Mi(ε− si,j)

Mi +Mj

This correction is equivalent to a correction of the velocity given by

∆Ui =
∆ri

δt

Xj −Xi

|Xj −Xi|
, ∆Uj =

∆rj

δt

Xi − Xj

|Xi − Xj|
(2.20)

or the introduction of an additional force ci,j in the particle’s momentum equa-
tion.
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• Particle-wall collision The lubrication force is calculated as follows

ci =







−6πriUi,⊥µ

(
ri

si
−
ri

h

)

if si < h

0 otherwise
(2.21)

where Ui,⊥ is the velocity component perpendicular to the wall, h is the grid
size and si is the gap between the wall and the particle. This force is used to
correct the particles’ velocity in the rigid body substep.

2.3.5 Model improvements

The developed model can be seen as the most basic one, that has to undergo ex-
tensions in order to cover more sophisticated phenomena. This extension is done by
including more then the above mentioned forces, e.g. the following ones.

• Drag forces, consisting of friction and form drag.

• The Buoyancy force, that gives rise to an additional pressure force in the
direction of the pressure gradient.

• The Basset force arises from the fact that with the acceleration/deceleration of
a particle, also a fraction of the surrounding liquid is accelerated/decelerated.
The lagging of the boundary layer development on the particle causes this
force.

• Slip-shear and slip-rotation lift forces have to be taken into account when the
no-slip condition is not assumed.

As mentioned before, the collision model is very basic as well and will have to be
extended for higher accuracy in the approximation of the physical phenomena. Also
fluid-particle interaction forces have to be taken into account in special situations,
among them the Coulomb force or thermophoretic forces.

2.4 Numerical simulation methods

For this model of the presented problem, different numerical solving strategies have
been developed, the most important ones are presented in the following survey.

Arbitrary Lagrangean Euler technique

Hu et al.[HuJC92, HuPZ01], Maury [Maur99], and also Galdi and Heuveline [GaHe07]
developed a finite element method based on unstructured grids for the simulation of
rigid particles in Newtonian and viscoelastic fluids.
The governing equations of fluid and particle motion are incorporated into a single
coupled variational equation in a way, that the hydrodynamic forces and torques act-
ing on the particles are eliminated. The grid nodes on the particle surface move with
the particle, while the nodes inside the fluid domain are computed using Laplace’s
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equation for a smoothly varying distribution of nodes. When the mesh gets too
distorted, a new mesh is generated at each time step and the flow field is projected
onto the new mesh.
The main disadvantage of this technique is that in the three-dimensional case effi-
cient body-fitted grid generation methods are not yet satisfyingly available.

Fictitious domain method using distributed Lagrange multipliers

Glowinski et al. [GPHJ99, Glow03] proposed a fictitious domain method for the
direct simulation of rigid particles in fluids. In this method the whole domain Ω is
considered as being a fluid and where the particle domain Ω2 is constrained to move
with rigid body motion.
In the aforementioned references, this constraint is implied by a , accompanying
again a combined variational equation for the fluid-particle motion where the mutual
forces cancel. The result is an implicit scheme that allows the usage of a fixed
structured grid, thus eliminating the need for re-meshing. For the solution of the
Lagrange multipliers, one for each particle, sub-grids around the particles are needed.

Fictitious domain method using a global Lagrange multiplier

Minev, Nandakumar et al. [DGMN03] reviewed the scheme of Glowinski and pro-
posed to approximate both, the fluid velocity field and the Lagrange multiplier for
imposition of the rigid body motion on the same fixed Eulerian grid. This way the
rigid particles don’t have to be gridded separately and a higher simulation speed is
achieved.

Fictitious Domain Method without a Lagrange multiplier

In [VeMN07], the previous scheme was further modified, such that the rigid body
motion is determined by an integral equation that can be approximated by direct
extrapolation. This leads to a fully explicit scheme with respect to the rigid body
constraint.

Fictitious boundary method

This method was originally presented by Turek, Wan and Rivkind [WaRT02] and ad-
vanced in further publications. It is a multi-grid finite element method, that extends
the fluid domain into the particle domain as well, and introduces boundary condi-
tions at the interface Σ between particles and fluid. Based on an unstructured coarse
mesh, the large scale structures are described by a rough boundary parametrization.
All fine-scale features are then treated as interior objects, such that the correspond-
ing components in all resulting matrices and vectors are unknown degrees of freedom
and are incorporated into the solution steps. No mesh adaptation is needed here.
In [WaTu07], this method is combined with a moving mesh method, in order to
improve the accuracy for capturing the surfaces of the rigid particles, that had been
only of first order before. Starting with an arbitrary block structured grid, the grid
spacing is changed such that the grid points are concentrated near the surface of the
rigid particles. In every time step, such a deformed grid has to be generated by the
cost of solving additional linear Poisson problems.
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Other methods

For completeness a number of alternative methods shall be mentioned here: large
eddy simulations and methods solving the Reynolds-averaged Navier-Stokes equa-
tions are computationally less intensive, but also less accurate. Also the lattice
Boltzmann methods do not solve the original Navier-Stokes equations but the discrete
Boltzmann equation. Furthermore there have been approaches based on Stokesian
dynamics simulations, and statistical approaches using particle probability density
functions.

2.5 Fictitious domain formulation

As the goals of this thesis include the fast simulation of a high number of parti-
cles, a method based on fixed uniform grids is to be preferred. The fictitious do-
main methods proposed hold this property, where [DGMN03] and [VeMN07] promise
faster computation speeds by avoiding an individual treatment of the particles as
in [GPHJ99] (neglecting collisions). The following derivation of a fictitious domain
method suiting the purpose of this thesis follows thus rather the process sketched in
[DGMN03] and [VeMN07].

The preparations for applying this method have already been done by deriving mo-
mentum equations for both the fluid and the particles.
The fluid momentum equation (2.14a) read

ρf
Duf

Dt
= ∇ · σ in Ω1,

while the rigid motion was derived in (2.17) as
∫

Ω2,i

ρi
Dui

Dt
dx =

∫

Ω2,i

(ρi − ρf )g + c + ∇ · σ dx in Ω2,i.

The whole domain Ω is now assumed to be filled with a fluid and an additional force
F is inserted in order to model the interaction of the fluid and the particles.

ρf
Du

Dt
= ∇ · σ + F in Ω. (2.22)

According to Newton’s third law of motion, to every action, there is an equal and
opposite reaction. In this context, the particles have to summon up an opposing
force to the fluid and F becomes

F =







0 in Ω1

ρf
Du

Dt
−∇ · σ in Ω2,i.

Using this notation, the particles’ moments can be written as
∫

Ω2,i

ρi
Dui

Dt
− ρf

Du

Dt
dx =

∫

Ω2,i

(ρi − ρf )g + c − F dx in Ω2,i.
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As Ω2,i, the sub-domains of the enlarged fluid velocity field occupied by particles,
shall behave like rigid bodies, we set

u = ui in Ω2,i, (2.23)

and obtain
∫

Ω2,i

(ρi − ρf )
Dui

Dt
dx =

∫

Ω2,i

(ρi − ρf )g + c − F dx in Ω2,i.

When inserting (2.16), the derivative of the angular velocity term vanishes and we
get

∫

Ω2,i

(ρi − ρf )
DUi

Dt
dx =

∫

Ω2,i

(ρi − ρf )g + c − F dx in Ω2,i.

This can be further simplified by noting that Ui, g and c are constant on Ω2,i and
by further introducing the mass difference ∆Mi =

∫

Ω2,i
ρi − ρf dx, and Vi for the ith

particle’s volume:

∆Mi
dUi

dt
= ∆Mig + Vic −

∫

Ω2,i

F dx in Ω2,i. (2.24)

Of course, the incompressibility condition (2.9) holds also in Ω2,i, what implies

∇ · u = 0 in Ω. (2.25)

Thus (2.22), (2.24) and (2.25) already yield equations for u, p and Ui.

An equations for Xi can easily be obtained by (2.15a)

dXi

dt
= Ui i = 1, . . . , n (2.26)

and ωi can be recovered from the no-slip condition (2.19) as follows.

u = Ui + ωi × (x − Xi) on ∂Ω2,i i = 1, . . . , n

=⇒

∫

∂Ω2,i

u× n ds =

∫

∂Ω2,i

(Ui + ωi × (x − Xi)) × n ds i = 1, . . . , n

Stokes
⇐⇒

∫

Ω2,i

∇× u dx =

∫

Ω2,i

∇× (Ui + ωi × (x − Xi))
︸ ︷︷ ︸

V orticity

dx i = 1, . . . , n

⇐⇒

∫

Ω2,i

∇× u dx = 2ωiVi i = 1, . . . , n (2.27)

These equations (2.22)-(2.27) fully describe the model above. Still missing is a
formulations of the interaction force F. It is determined by the condition (2.23),
but not directly contained in it. Thus in [DGMN03] it was imposed via a Lagrange
multiplier, but in [VeMN07] an explicit equation was derived during discretization.
As the discretization step is postponed after the hardware discussion, the specific
calculation of the fluid-particle interaction will be covered likewise in chapter 5.
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2.6 Summary

A model of particulate flows based on the continuum hypothesis leads to the Navier-
Stokes equations as a description of the fluid flow behavior and a similar momentum
equation for the rigid body motion.

The general idea of the fictitious domain formulation is to extend the geometrically
complex fluid domain Ω1 into the domain occupied by the particles Ω2 and obtaining
a simpler domain Ω.

The enlargement of the fluid domain is done by introducing an interaction force that
acts differently on Ω1 and Ω2 such that the behavior of the whole domain Ω can be
described by a single equation depending on this force.

The main advantage over ALE and fictitious boundary methods is, that the domain
Ω is not time-dependent anymore, such that a fixed mesh and fast direct solvers can
be applied, though with the backdraw of limited resolution on the particles’ surfaces.



3. Heterogeneous computing,
GPGPU and CUDA

Heterogeneous, composed of the Greek words heteros (έτερoς) and genos (γένoς),
means to consist of elements or parts of dissimilar kind.

As frequency scaling is physically constrained by current leakage, leading to heat
generation and high power consumption, other strategies for improving computer
performance have to be pursued. Meanwhile multi-core systems are de-facto stan-
dard with currently up to quad-core CPUs, but the complexity and size of these
general purpose cores limits further scaling. An approach used since the early days
in system architecture is a heterogeneous concept that delegates work to special
purpose co-processors (cf. peripheral co-processors of CDC 6600, the first ”super-
computer”, 1964).

This chapter sets modern graphics processing units (GPUs) into the context of het-
erogeneous system architectures, explaining their pro’s and con’s. The second part
will deal with general-purpose computing on graphics processing units (GPGPU),
its history and current capabilities. The particular hard- and software used in this
thesis, a NVIDIA GeForce GT200 GPU with CUDA, will be explained in detail in
a third part.

3.1 Approaches to heterogeneous computing

All solutions presented here, besides the Cell processor, are accelerators comple-
menting standard microprocessors. They all promise enormous single thread peak
performance, but differ widely in their applicability in science, their power con-
sumption and programmability. Interesting characteristics will thus be the overall
performance of typical scientific kernels, the price/performance and watt/perfor-
mance ratios as well as the development expenditure. Further interesting issues are
IEEE 754 compliance, ECC and memory coherency:
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IEEE 754, the IEEE standard for binary floating-point arithmetic[IEEE85] defines
number formats, special values (e.g. NaN and infinity), rounding rules and the
handling of exception conditions for typical floating-point numbers. Non complying
accelerators will hence produce other results as on conventional CPUs, that are IEEE
754 compliant.

Error correction code (ECC) mechanisms detect and correct transient errors as they
appear in every electronic device. ECC gains importance with the size of the sys-
tem: The probability of such an error increases linearly with the number of com-
ponents. Most of the following accelerator were originally not designed for the use
in clusters and thus do not provide adequate ECC mechanisms. This can lead to
non-deterministic behavior and incorrect results.

Commercially available servers maintain cache coherency across all processors. Cur-
rently accelerators cannot provide the same features, but efforts are made to achieve
coherency in the future. For example, a cache coherent HyperTransport1 version
(AMD) or extensions to PCIe (Intel, IBM) could be future connectivity solution.

3.1.1 MDGRAPE-3

MDGRAPE-3 is a high performance computer, developed by the RIKEN research in-
stitute and the University of Tokyo for the simulation of molecular dynamics.[Taij03]
The idea behind this system is to outsource the force calculation as it dominates
the computational time. For this purpose 256 dual-core Intel Xeon host computers
have been complemented with 24 MDGRAPE-3 chips each via a PCI-X interface
(133 MHz, max. 10 GBit/s). Each chip houses 20 pipelines for force calculation (33
operations) and a local memory for 32,738 particles. The pipelines are capable of
efficiently calculating two-body forces Fi by

∑

j αg (β |ri − rj|) (ri − rj), where g(x)
is an arbitrary smooth function. Figure 3.1 shows the hardware implementation
with additional parameter input possibilities. The multiplications are done with
single precision floating-point arithmetic (SP, 32bit) and the additions partly also
in 40 and 80 bit fixed point arithmetic. As all 20 units work simultaneously, one
MDGRAPE-3 chip achieves 660 operations/cycle, resulting in 165 GFLOPS at 250
MHz.

The main advantage of the MDGRAPE-3 chip is its comparatively low power con-
sumption of 40 W per two chip board (0.12 W/GFLOPS) and fairly low development
costs of 15M USD (15 USD/GFLOPS for the whole system). On the other hand, the
applications for this machine are strictly limited to molecular dynamics or similar
N-body simulations that furthermore should not be too data-intensive. A 2-Chip
board for academic usage is available for 12,000 USD, resulting in 36 USD/GFLOPS.

3.1.2 FPGAs

Field programmable gate arrays, FPGAs, are microchips that are able to form differ-
ent electronic circuits by reconfiguring internal structures. Invented in 1984, FPGAs
have been intensively used in embedded and real-time systems. Meanwhile, even su-
percomputers like the Cray XD1 or SGI RASC Blades use FPGA technology to

1 http://www.hypertransport.org

http://www.hypertransport.org
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Figure 3.1: MDGRAPE-3 force pipeline

adjust the processor architecture to the need of the respective algorithm. The two
above mentioned systems both use Xilinx Virtex-4 FPGAs, that offer up to 200,000
logic cells, programmable to form AND, XOR or more complex functions. Memory
is available in form of up to 1.36 Mbit distributed RAM and 10 Mbit block RAM.
The peak performance is 15.6 GFLOPS for DGEMM.

It is further possible to (re-)program these FPGAs even during run-time, thus pro-
viding reconfigurable computing . The programming is either done in traditional
hardware description language (HDL) or C-based languages generating HDL code.
Still, the complexity and compilation overhead leads to a slower development in
comparison to non-mixed platforms: In order to speed up an existing program, the
developer has to modify the code in accordance to the FPGA C language, compile to
HDL (or Verilog), produce and download a ”bitfile” to the FPGA and finally compile
the complete application for host and FPGA. Fortran code, as still heavily used in
science, is not supported yet.

Although FPGAs provide good results for compact and well defined kernels, space
limitations enforce compromises. Though FPGAs usually implement data repre-
sentations according to IEEE standards, the edge condition handling is often not
conforming. FPGAs could theoretically implement IEEE 754 completely, but would
need to sacrifice large chip space and possibly loose their performance advantage.

As it was the case with the above mentioned non-reconfigurable MDGRAPE-3 chip,
FPGAs benefit from pipelining and a high number of operations per cycle. Hence,
the best performance is achieved for integer operations; 64bit floating-point opera-
tions on the other hand just achieve a fraction of the 32 bit FP performance. Double
precision multipliers need four times the hardware of single precision multipliers and
much longer computation time.[SuPS08] While the watt/performance ratio is gener-
ally good (a FPGAs needs usually 10 to 25 W), the performance/price ratio depends
on the application. Simple FPGAs with small block RAM sizes and few logic cells
are cheap but not versatile, more complex chips however quickly get very expensive.
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3.1.3 ClearSpeed accelerator cards

ClearSpeed offers accelerator cards for servers and standard PCs with PCIe Slot.
The latest card is called ”Advance e710”and includes one CSX700 chip and 2 GByte
ECC-DRAM. A CSX 700 consists of two multithreaded array processors (MTPA),
housing a mono (scalar) and a poly (parallel) execution unit, whereby the latter
consists of 96 processing elements (PEs). The basic structure of a MTPA is shown
in figure 3.2. While the mono execution unit only has a floating-point unit (FP unit),
the processing elements are equipped with integer arithmetic logical units (ALUs)
and integer multiply-accumulate (MAC) units.[Clea07] The peak performance of this
chip is 96 GFLOPS in double precision (DP, 64bit) and the power consumption 25
W/board.[Clea08] This results in 0.3 W/GFLOPS and, assuming a price of about
3000 USD, 31.25 USD/GFLOPS.

The main advantage over FPGAs is the facilitated software development. Besides a C
compiler, debugger and profiler, (Fortran callable) libraries exist that offer straight-
forward acceleration of selected level 3 BLAS, LAPACK and FFT functions. Even
Matlab and Mathematica support is available.

The IEEE 754 and ECC support make ClearSpeed cards interesting for the use in
clusters. The TSUBAME cluster of the Tokyo Institute of Technology used 360
Advance 620 chips to achieve 56 TFLOPS in the Linpack benchmark, rank 9 in
top500 list as of November 2006.

Figure 3.2: Structure of a multithreaded array processor of the CSX700 chip

3.1.4 Graphics cards

The idea of using graphics hardware for general computations is not new and its
history is sketched in 3.2. There are currently three mayor producers of graphics
cards, ATI (purchased by AMD in November 2006), Intel and NVIDIA. While In-
tel currently focuses on medium performance on-board graphics, ATI and NVIDIA
also offer dedicated hardware and APIs for GPGPU applications. Historically, the
strength of GPUs are single precision floating-point operations, currently 933.12
GFLOPS for a NVIDIA GeForce GTX 280 and 1.2 TFLOPS for a AMD Radeon
HD 4870 (peak). These new GPU generations can also provide double precision
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and integer operations (NVIDIA in hardware, ATI emulated), however with reduced
FLOP rates: 77 GFLOPS in double precision for NVIDIA and 200 GFLOPS for
AMD. Choosing the single precision performance for calculating the power efficiency,
both chips need about 0.2 GFLOPS/W. This might sounds all right, but more than
200 W power consumption makes those chips hardly eligible for e.g. blade servers.

Because of the huge volumes graphics cards are produced in, the chips are fairly
cheap. Low budget cards start at about 50 USD, midrange cards are available for
150 USD and up and the newest high performance graphics cards retail at 300 to
500 USD. At the time of introduction, a GTX 280 with 1 GB RAM had a per-
formance/price ration of 0.5 USD/GFLOPS, a HD 4870 with 512 MB RAM 0.3
USD/GFLOPS.
In addition to high performance consumer cards that are GPGPU capable, both
vendors offer dedicated versions for high performance computing (HPC). These are
equipped with quadrupled memory (NVIDIA TESLA/ AMD FIRESTREAM) and
do not have a video output anymore. Although their prices are much higher, these
solutions do not offer ECC yet and AMD’s chips don’t follow IEEE 754 completely.
At least NVIDIA fully implements IEEE 754R for double precision, a revised version
of IEEE 754 from 2006.

The programming can be done with conventional graphics languages like OpenGL,
but both NVIDIA and AMD offer more general programming models for their chips
too. AMD’s Close to Metal (CTM) is a quite low level API, that can be used with
Brook+, a variation of the higher level GPU programming language Brook developed
at the University of Stanford. Brook+ is still near to stream processing (vectors
of variable length) and requires major code changes. [Adva08] NVIDIA’s solution
is called ”Compute Unified Device Architecture” (CUDA), an extension to the C
programming language that is not as restrictive as Brook+ (cf. 3.3.2).[NVID08b]

3.1.5 Cell processor

The original Cell processor as designed for the Sony PlayStation 3 by Sony, Toshiba
and IBM, has quickly drawn interest of scientists as it offers chip level heterogene-
ity: One IBM PowerPC processing element controls 8 simpler synergistic processing
elements (SPEs), as shown in figure 3.3.[CRDI07] Each SPEs houses a 256 kB local
store that is software controlled by DMA and not managed like a usual cache. It
fetches data asynchronously from DRAM, hereby hiding memory latency. This ap-
proach uses the available memory bandwidth more efficiently then ordinary prefetch
techniques but makes the programming more complex. The SPEs have two paral-
lel pipelines, one issuing computational instructions, the other issuing loads, stores,
permutes and branches. The SPEs underwent revision for the use in HPC, improv-
ing most notably their double precision performance. The result is named IBM
PowerXCell 8i.[HMZZ+08]

The second processor generation has a single precision peak performance of 200
GFLOPS and 100 GFLOPS in double precision, resulting in 1.84 GFLOPS/W and
25 USD/GFLOP for single precision (IBM BladeCenter QS22, 8 GB RAM). ECC is
only supported for external memory and the SPEs deviate from IEEE 754 (e.g. only
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Figure 3.3: Cell processor architecture

round to zero is supported)[IBM 08]. The main advantage of this heterogeneous chip
are fast memory transfers, avoiding PCIe or the even slower PCI-X as bottleneck.
The main disadvantage is the more time consuming programming.

3.1.6 Comparison

One can coarsely divide the above described accelerators in two groups: Highly
specialized chips for well-defined tasks (FPGAs, MDGRAPE-3) and chips that claim
to be beneficial for pretty much any task in HPC (ClearSpeed, GPUs, Cell). The
second group’s advancements in double precision and IEEE-754 support make them
especially interesting for scientific applications.

GPUs and ClearSpeed cards struggle with data-intensive kernels, but are fairly easy
to program. ClearSpeed cards need very low power in direct comparison, but GPUs
are unbeatably cheap though offering enormous single precision performance. Cell’s
great advantage is its fast memory access, but the second generation processor is
not as cheaply available as the PlayStation 3 version was.

Table 3.1 gives an overview of the pro’s and con’s of the discussed hardware plat-
forms. The usability does not only depend on the purpose but also on the computing
environment. Large scale production clusters depend on ECC and a high mean time
between failures (MTBF). Thermal issues as they can arise with graphics cards are
thus problematic. But for turning a standard workstation into a teraFLOPS (SP,
theor.) computer, there is no cheaper way then installing a modern graphics card.

3.2 GPGPU

General purpose computation on graphics processing units depicts calculations done
on a GPU, whose primary purpose is not video output. As early as 1990, GPUs
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MDGRAPE FPGA ClearSpeed GPU Cell

Specialized in Force calcu-
lation

Integer,
≤SP

DP Graphics,
SP, DP

Graphics,
SP, DP

DP Performance N/A Low High High High

IEEE 754 No Expensive Yes In parts In parts

ECC No No Yes No In parts

Programming Easy Hard Easy Easy Medium

Power Low Low Low High Medium

Price High Medium High Low High

Table 3.1: Overview of heterogeneous computing technologies

could be used for robot motion planning[LRDG90], long before 3D capabilities were
introduces. Another technique from 2001 renders two textures in an ingenious fash-
ion on a cube, such that the use of particular parameters for perspective and texture
overlay yields the matrix product of the textures’ 8 bit color values.[LaMc01] A
texture size of 1024 × 1024 pixels reached in this way more then 4 GBOPS (byte
operations per second). Because of this inconvenient programming, the beginning of
GPGPU is rather connected to the introduction of the fully programmable graphics
pipeline also in 2001[OLGH+07].

The problems GPGPU deals with, were originally strongly connected to computer
graphic and image processing. With the introduction of full floating-point support,
scientific projects started implementing finite difference and finite element techniques
for the solution of systems of partial differential equations (PDEs). Several papers in
2003 demonstrated e.g. solutions of the Navier-Stokes equations for incompressible
fluid flow on the GPU [BFGS03, KrWe03] or for boundary value problems [GLLS03].
Meanwhile, even industrial applications using GPUs start emerging.

3.2.1 The graphics pipe line

The graphics pipe line uses several stages to creates a visual image out of the descrip-
tion of a scene. Its structure changed continuously, as it reflected the hardware’s
makeup. Originally, every stage was implemented in hardware and could only be
adjusted by a few parameters in video memory. When some of the elements of the
already parallelized texture mapping unit got its own instructions set, it was prac-
tically turned into a primitive SIMD (single instruction multiple data, according to
Flynn’s taxonomy [Flyn66]) processor array. These components where called pixel
shaders, as they were originally meant to enhance the possibilities of rendering a tex-
ture onto an object. Soon this programmable shader concept was also transferred
to the input stage of the pipeline, introducing vertex shaders.

Figure 3.4 shows the graphics pipeline as specified by Direct3D 10, a Microsoft
API for 3D graphics, that furthermore supports geometry shaders after the vertex
shaders.[Micr08] The input assembler supplies triangles, lines and points, that the
vertex shaders process vertex wise (transformations, lighting, etc.). The geometry
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shaders works on whole primitives again (triangles, lines, points), where the original
primitive might be emitted and one or more others be newly created. The resulting
data can now be given to the rasterizer or be streamed back into memory. From
the memory it could be passed to the CPU or recirculated back into the pipeline as
input data.
The rasterizer is not programmable, its task is to transform the objects into screened
fragments, consisting of numerous pixels. These pixels are subsequently treated by
the pixel shaders, generating amongst others the pixels’ color values. The output
merger finally combines all output data in order to generate the pipeline result.

Figure 3.4: Direct3D 10 programmable pipeline

3.2.2 Stream processing with GPUs

Stream processing is a programming paradigm that facilitates eligible computational
problems in hard- and software: The same series of operations is applied to every
element of a set of data (stream). Hence, the operations can be pipelined and data
locality can be exploited to minimize memory latency. The best results are achieved
if data dependency and data re-use are low, such that many stream processors can
process the stream in parallel.

GPUs are perfectly suited for stream processing as the shaders of figure 3.4 are
nothing but independent groups of many stream processors, working on different
streams within graphics processing, e.g. the sets of vertices and pixels. In the case
of GPGPU, a stream is rather a data set within the texture memory, whose entries
shall be processed by a shader program. Before the introduction of unified shaders
that can fulfill any of the different shaders’ tasks, the interaction between vertex
and pixel shaders was quite complicated. In most cases, only the pixel shaders were
used, as they provided a higher number of stream processors and vertex shaders had
no memory access in the beginning. At that time, for every element in the stream,
a pixel had to be created and a primitive 2D object that got mapped with the
pixels as texture. The pixel shaders processed this data and wrote the result into
their registers, that were later placed in the frame buffer . A major disadvantage
of stream processing gets visible here: Data can only be written to and fetched
from this buffer in a continuous fashion, data scattering is not possible. Even in
Direct3D 10, that allows a write to memory before the rasterizer, data can still only
be written as stream. On the other hand, GPUs extend the stream processing model
by allowing data gathering, i.e. reading of scattered data.

The scattering problem has been addressed with the development of CUDA, a stream
processing independent programming language for NVIDIA GPUs. In fact, the
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whole graphics pipeline gets uninteresting for the programmer. This is a logical
progression, as the stream processors of all shaders are meanwhile built identically,
are able to communicate with each other and have unrestricted memory access.

3.3 CUDA

3.3.1 The GeForce GT200 hardware architecture

Modern graphics chips have evolved away from the original graphics pipeline, dynam-
ically allocating hardware resources for the tasks involved in graphics. The NVIDIA
GeForce GT200 GPU and 1 GByte DRAM are the main components of the GeForce
GTX 280 graphics card. The core components of the GPU are the 10 TPCs , stand-
ing for texture processing clusters in graphics processing mode, and thread processing
clusters in parallel compute mode. Each TPCs consists of 3 streaming multiproces-
sors (SMs), that in turn are made up of 8 streaming processors (SPs).[NVID08c]

Figure 3.5 shows the GPU’s structure in compute mode. The thread scheduler at the
top is hardware-based and responsible for efficiently scheduling threads across the
TPCs. Below the TPCs are texture caches and DRAM controllers for interfacing the
global memory. The texture caches combine memory accesses for higher efficiency
and bandwidth usage, the atomic elements refer to atomic read-modify-write oper-
ations the GPU is capable of. The DRAM interface is 512 bit wide and achieves a
peak bandwidth of 138 GB/s.
At the bottom of figure 3.5, one of the TPCs three SMs is shown in detail. Every
SP has its own ALU, that operates on the 2048 local registers (8 kB). This number
might seem high, but is qualified by the number of threads running quasi-parallel
on a core dividing the registers among them (cf. 3.3.2.2).

Besides the ALUs basic functionality of executing one MAD per cycle (a fused
floating-point multiply and add), a super function unit (SFU) executes more so-
phisticated operations like root extraction or supports the calculation with up to
four floating-point MULs. This results in an average SP performance of 2 + 1 = 3
FLOP/cycle in single precision. Given a chip clock rate of 1296 MHz, the overall
performance equals 3 · 240 · 1.296 = 933.12 GFLOPS, as mentioned in 3.1.4. Very
important for scientific usage are the double precision units, one in each SM. These
can perform one fused MAD per cycle in accordance with IEEE 754R. Here the
overall performance computes to 2 · 30 · 1.296 = 77.76 GFLOPS.

Besides the registers, a SP can access three other kinds of memory:

Shared memory - Every SM is equipped with 16 kB of local shared memory, that
all its SPs can read and write in parallel. If there are no conflicts, the shared
memory can be accessed as fast as registers (cf. 3.3.5.1)

Constant cache - This 8 kB cache makes data of the constant memory (see below)
available with register latency.
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Figure 3.5: Architecture of the NVIDIA GeForce GT200 GPU
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Texture cache - Another 8 kB keep previously accessed texture memory and can
also be accessed with register latency.

The texture units between the SMs texture cache and the TPCs texture L1 cache pro-
vide special functions for linear interpolation of texture values and address transla-
tion, such that in the case of a cache miss data can be fetched from a two-dimensional
neighborhood. Texture memory is not coherent up to this point and thus handled
as read-only.
The TPCs constant cache gets its data from a 64 kB block of the DRAM. This
memory area can not be written by the GPU but allows fast accesses (in addition
to caching). The rest of the global memory is read/write accessible by all SPs, but
is rather provided for data exchange between host and GPU because of its latency.
Those data transfers can be done via direct memory access (DMA) over the PCIe
bus.

It holds for every read and write operation, that data can be arbitrarily localized
in memory, gathering and scattering is allowed without restrictions. The latency of
these accesses to global memory depends on various conditions that are considered
more detailed in 3.3.5.1.

3.3.2 The CUDA programming paradigm

3.3.2.1 Thread hierarchy

It is still possible to use CUDA enabled hardware for stream processing. In order
to bridge to the CUDA programming model, stream processing can also be seen
as a particular, restricted form of multi-threading . The individual threads of a
multithreading program are identified by a unique ID, issued by a thread scheduler
on execution. Every thread is able to run independently, read from global memory
and use an ALU and registers for computation. The result is then written into
particular registers.

Figure 3.6: Read/write possibilities of a conventional thread program on a GPU

As it is the case with the GT200 GPU (cf. 3.3.1), every CUDA enabled device
offers its threads access to global memory, a special shared memory, associated to
the SP the thread is running on, and a local memory. The set of threads T is
disjointly partitioned into groups T =

∐n
i=1 Ti, such that the threads in Ti can
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read from and write to shared memory Si. In order to keep data dependencies, a
barrier synchronization for all threads in Ti is available. The local memory is only
used for automatic variables, if the register space is not sufficient (cf. 3.3.3.1). Its
performance is equal to global memory.[NVID08b]

Figure 3.7: CUDA thread program with access to local, shared and global memory

In order to ensure shared memory functions, all threads of a group reside on the
same SM. In the CUDA diction, such a group is called thread block , as its individ-
ual threads are addressable in a one-, two- or three-dimensional fashion, providing
natural indexing for e.g. vectors, matrices and fields. The number of threads in a
block is physically limited by physical resources of the SM, e.g. up to 512 for the
GT200 GPU. However, multiple identically shaped blocks can be created, that again
are virtually arranged in a one- or two-dimensional grid , consisting of up to 65,535
blocks (GT200), identified by block IDs . The blocks of a grid are meant to run with-
out a definite order and only share the global device memory; even so they might
coordinate their activities by using atomic writes to variables in global memory(cf.
3.3.2.2).
Different grids utilizing the same kernel can be executed in parallel, given enough
hardware resources are available. Dependent grids can be separated by a inter-kernel
barrier, as shown in figure 3.8. This barrier guarantees that all blocks of the first grid
are completed before any block of the second grid is launched.[NBGS08] Different
kernels are executed sequentially and are provided the unrestricted capabilities of
the device.

The broad options for choosing thread block and grid sizes allow different levels of
granularity, depending on the task to be addressed. The fact, that the number of
thread blocks can greatly exceeds the number of processors and the thread blocks
themselves can be scheduled in any order, will allow CUDA programs to scale effi-
ciently to increasing numbers of processor cores.

3.3.2.2 Hardware mapping

Across the 10 TPCs, CUDA uses a MIMD (multiple instruction multiple data,
[Flyn66]) processing model, the single SMs employ a model called SIMT (Single in-
struction multiple thread). The SM’s instruction unit creates, manages, schedules,
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Figure 3.8: CUDA kernel sequence with exemplary levels of granularity and possible
memory sharing

and executes the individual threads of a thread blocks in groups of 32, so-called
warps.

This means, that n threads create ⌈n/32⌉ warps, with the last warp being filled
with non-effective threads, if necessary. An instruction of a warp is executed in
four cycles on eight threads at a time. Usually several instructions are combined,
such that at the same point in time, different threads may be at different points
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within the program execution. Threads of a warp may also explicitly diverge, e.g.
into data-dependent conditional branches. The warp executes each branch path
sequentially, disabling other threads not on this path. After converging back to the
same execution path, branches are combined again. This method can lead to a 32
times higher run time, for the case that every thread is diverging. These divergences
only occur within a warp; different warps are executed independently despite running
potentially identical code.

A thread is always bound to a particular SP. The threads of a SP disjointly divide its
registers among them, hence switching threads does not imply swapping register en-
tries. The SM’s warp scheduler may thus hide memory latency by choosing another
of the SPs remaining threads for execution in the meantime. Each SM manages a
pool of 32 warps of 32 threads per warp, a total of 1024 threads.
Different thread blocks are equally bound to a SM. Bringing another thread block
forward is not supported, thread blocks are always executed uninterrupted and se-
quentially. The hardware provides a strict barrier synchronization, where all to be
synchronized threads have to reach the same synchronization instruction, before any
of them is allowed to continue with the following instruction. When the first thread
reaches the __syncthreads() instruction at instruction counter value i, the execu-
tion is held until all other threads of this warp reached the same __syncthreads() at
i. To prevent deadlocks, diverged threads should never miss out a __syncthreads()

or execute a different one. __syncthreads() takes four clock cycles to issue for a
warp if no thread has to wait for any other threads.
Alternatively atomic memory access to global memory can be utilized for manual
synchronization with busy-waiting (spinning). In theory threads can be synchro-
nized at different points in their programs, even across different SMs. Practically,
deadlocks might be created by the scheduler as soon as there are more blocks then
SMs and not all to be synchronized blocks can be ran in parallel. As mentioned
before, thread blocks are executed uninterruptedly and thus block the SM when
busy-waiting.
A subset of threads of the same block however can unhesitatingly be synchronized
using this technique.

Although it is not possible to run concurrent kernels on the same GPU, there is the
possibility to run several streams via a stream scheduler on the host. Given a high
number of kernel launches on disjoint areas of memory, organizing these kernels in
streams may increase performance noticeably.

3.3.3 The CUDA application programming interface

NVIDIA offers on its website2 the essential tools to program CUDA enabled hard-
ware devices: Device drivers, the NVCC compiler, libraries, header files and a soft-
ware development kit (SDK) with several examples. The main functionality is pro-
vided by libraries, such that programming a CUDA kernel is done in usual C style
with some C++ enhancements. Just few real extensions are necessary.

2 http://www.nvidia.com/object/cuda home.html

http://www.nvidia.com/object/cuda_home.html
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3.3.3.1 C Language extensions

The programming language C is extended by four function type qualifiers, three
variable type qualifiers, two directives and five built-in variables. All other func-
tionalities are provided in a usual C/C++ style by libraries, compiler constants and
templates.

Function qualifiers The three function type qualifiers __global__,__device__
and __host__ determine for which target a function is compiled and from
where it may be called. A prefixed __global__ instructs the compiler to
compile the function as CUDA kernel, that can only be executed on the de-
vice and is called by a particular directive from the host. The execution is
asynchronous, meaning the program continues before the kernel returns, if not
stated otherwise.
In order to unitize kernels, __device__ functions can be created that likewise
run on the GPU but are only callable from __global__ or other __device__
functions. Further restrictions on kernels and their execution are presented in
table 3.2 and motivated in [NVID08b].
By default, device functions (i.e. functions qualified by __global__ or __devi-
ce__) are embedded in-line if not the fourth qualifier __noinline__ is used.
__host__ is the default function qualifier, that is used if neither __global__

nor __device__ have been stated and indicates, that the function is compiled
for the host. It is however combinable with __device__, such that the function
is compiled twice, once for the host and once for the device.

Executes on Called by Returns Rec.1 St.Var.2 # Arg.3

__global__ GPU Host void - - fixed

__device__ GPU GPU any - - fixed

__host__ Host Host any • • variable

Table 3.2: Restrictions on function types. 1 Allows recursion, 2 Allows static vari-
ables, 3 Number of Arguments

Variable type qualifiers The three variable type qualifiers __device__,__con-
stant__ and __shared__ define that a variable is to reside in the device mem-
ory and where in particular memory shall be allocated. A prefixed __device__

states, that this variable resides in the device’s global memory and can be read
and written by both host and device functions. Its memory stays allocated un-
til it is explicitly freed or the application finishes.
The __constant__ qualifier (optionally used in addition to __device__) de-
clares a variable that is put into the constant memory space of the device and
hence can only be written by the host (cf. 3.3.1).
When using the qualifier __shared__ (optionally used in addition to __devi-

ce__ again), the variable is placed in a SM’s shared memory during run-time.
Only the threads of the corresponding thread block are able to read from and
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write to it, hence it can not be initialized when launching the kernel. After
the thread block’s execution, the memory space is freed again. When using
__shared__ in connection with extern, as in

extern [__device__] __shared__ Type Array[];

the size of this array Array of type Type is determined when launching the
kernel (see below). All similarly declared variables start at the same memory
address, thus the layout of these variables must be explicitly managed through
offsets. Details are again explained in [NVID08b] and summarized in table 3.3.
Declaring a variable in device code without any of these qualifiers generally
makes it reside in a register. In some cases the compiler might place it in
local memory (cf. 3.3.2). This is often the case for large structures or arrays
that would consume too much register space and arrays for which the compiler
cannot determine that they are indexed with constant quantities.

Memory Lifetime Static Read Write

__device__ Global App. •/- Host/GPU Host/GPU

__constant__ Constant App. • Host/GPU GPU

__shared__ Shared Block • GPU GPU

Table 3.3: Properties of variables declared with different type qualifiers

Directives Two new directives have been introduced with CUDA. The first one is
a #pragma directive that controls the compiler’s behavior in connection with
loops. Usually the nvcc compiler unrolls small loops with a known trip count.
When placing the #pragma unroll [n] directive immediately before the loop,
the unrolling of this particular loop can be controlled. The optional number
[n] specifies how many times the loop must be unrolled; hence a #pragma

unroll 1 will prevent the compiler from ever unrolling the loop. Attention
must be paid to the fact that the loop is in any case unrolled n times, even if
the specified trip count is smaller then n. Not specifying n leads to complete
unrolling, if the trip count is known at compile time.

The second directive is needed for specifying the execution configuration when
launching a (__global__) kernel function on the device:

Kernel<<<dGrid, dBlock [, allocBytes] [, stId]>>>(paramList);

A kernel function Kernel is hereby launched with the necessary parameters
dGrid and dBlock of type dim3, specifying the grid and block dimensions. al-
locBytes and stID are optional parameters, the first one defining the number
of bytes to be dynamically allocated in shared memory per block for the above
mentioned external arrays, the second defining the stream ID of a stream that
this kernel launch is appended to.
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Built-in variables The five built-in variables threadIdx, blockIdx, blockDim,
gridDim and warpSize are read-only variables to be used in device functions.
All variables aside from warpSize are three-dimensional (dim3 or uint3), with
elements x, y and z. At run-time, the variables provide the thread ID of the
running thread within the block in threadIdx and the block ID within the grid
in blockIdx. blockDim and gridDim provide the respective size along the (up
to) three dimensions. warpSize finally contains the warp size in threads.

3.3.3.2 Run-time components

The CUDA run-time components are offering a variety of functionalities and data
structures. The components are tripartite into a host, device and common run-time
component with respect to the context they can be called in. Host and device run-
time component are exclusively accessible from the respective functions, the common
run-time component can be called from both host and device functions.
Figure 3.9 shows the role of the run-time components within the CUDA software
stack: The run-time libraries implement the application programming interface and
interact with the device driver. Based on this, CUDA libraries for BLAS and FFT
are offering higher-level functionalities.

Figure 3.9: CUDA Software stack with run-time components

Not every CUDA enabled device implements the full range of functionalities pro-
vided by the run-time components. The supported subset of operations is indicated
by the compute capability of the device. Currently NVIDIA offers graphics cards
with compute capability 1.0, 1.1, 1.2 and 1.3. The following overview of the run-
time components presents compute capability 1.3 and mentions limitations of former
versions.
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Common run-time component The common component offers the following
vector data types, derived from the supported primitive data types (in EBNF
notation[fSta96]):

[u] ( char | short | int | long ) ( 1 | 2 | 3 | 4 ) ,

float ( 1 | 2 | 3 | 4 ), double2

The aforementioned dim3 type is similar to uint3, with the difference, that
unspecified components are initialized with 1 instead of 0.
Furthermore, the common component offers a variety of mathematical func-
tions that are implemented for the device and make use of the C standard
library, when executed on the host. These functions include for example sqrt,
sin, exp and erf. A complete listing can be found in section B.1 in [NVID08b].
The common component also includes a clock counter clock() and some tex-
ture operations, that are explained in an extra section.

Device run-time component In addition to the math functions of the common
run-time component, the device run-time component provides faster imple-
mentations of some functions albeit with lower accuracy. These functions can
be used globally when compiling with the -use_fast_math flag.
The already discussed syncthreads() functions is also part of the device run-
time component, as well as the atomic functions for memory access. Such an
atomic function performs a read-modify-write operation in global or shared
memory without interference by other threads. Atomic functions operating on
32-bit words on global memory are supported since compute capability 1.1,
functions operating on shared memory and operating on 64-bit words are sup-
ported in compute capability 1.2 and above. A list of all atomic functions can
be found in appendix C in [NVID08b]. Devices with compute capability 1.2
and above furthermore offer two warp vote functions __all and __any. The
first one evaluates an integer predicate for all threads of the warp and returns
non-zero if and only if the predicate evaluates to non-zero for all of them.
__any returns non-zero if and only if the predicate evaluates to non-zero for
any of them.
The texture fetch functionalities of the device run-time component are also
explained in the extra section.

Host run-time component As shown in figure 3.9, the host run-time component
is composed of two APIs, a low-level driver API and a higher level run-time
API . These APIs are mutually exclusive, thus an application should only use
one of them.
The driver API offers more control, but is harder to program and to debug.
For example, a kernel launch cannot be done with the discussed new direc-
tive and no device emulation mode is offered for debugging. Both APIs offer
the following functionalities, only through different interfaces. All driver API
functions are prefixed with cu, all run-time API functions with cuda.

Device management All devices available in the system can be enumerated,
their properties can be queried and one of them can be selected for kernel
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execution through the APIs. One host thread can execute device code on one
device only, hence multithreading on the host is needed to manage a multi-
GPU system. On the other hand, different host streams may execute device
code on the same device.

Memory management The APIs provide functions to allocate and free mem-
ory on both host and device. Besides the usual malloc() it is possible to allo-
cate page-locked memory on the host. Page-locked memory achieves a higher
bandwidth when transferring data to and from the device, but its available
amount is strictly limited. Furthermore, the system’s overall performance is
reduced along with its physical memory available.
In 4.2, thorough test are conducted in order to measure the performance dif-
ference between pageable and page-locked memory allocation, that show that
even more system factors are involved.
Device memory can be allocated either as linear memory in a (currently) 32
bit address space or as CUDA arrays. CUDA arrays are one-, two-, or three-
dimensional and composed of elements of the above mentioned vector data
types. Their memory layout is optimized for texture fetching, that is why they
are only readable through texture fetching on the device. The host can write
to CUDA arrays via the respective memory copy functions of the APIs.

Asynchronous Concurrent Execution As indicated previously, concurrent
execution between host and device is partly possible and manageable through
streams. A stream is identified by a stream ID and executes its operations
in order. The default stream has ID zero, any kernel launch, memory set
or copy without a stream parameter is assigned to it and no subsequent op-
eration may begin until it is done. A new stream is created along with a
stream object that is specified as stream parameter of a kernel launch and/or
a host↔device memory copy. Different streams execute their operations out
of order with respect to one another or concurrently. For example, there are
cu(da)StreamSynchronize() functions for waiting until all preceding opera-
tions in a stream have completed. Of course, there are also functions imple-
mented for destroying streams and returning control to the host thread.
It should be underlined, that two operations from different streams can only
run concurrently if neither a page-locked host memory allocation, a device
memory allocation, a device memory set, a device↔device memory copy nor
any CUDA operation to stream 0 is called in-between them by the host thread.

Event management Events allow fine granular device monitoring and high
accuracy timing (below one millisecond) and thus precise synchronization pos-
sibilities. Events are defined anywhere in a stream and their eventuation is
recorded when all tasks (or all operations in a given stream) preceding the
event have completed.
Events in stream zero are recorded after all preceding tasks/operations from
all streams are completed.

Texture management Also the host run-time component provides texture
management functions. These are explained together with the texture func-
tionalities of the other run-time components in the following section.
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DirectX and OpenGL interoperability For the sake of completeness, it
should be mentioned that it is possible to map OpenGL or DirectX buffer
objects into the address space of CUDA for interoperability. This functionality
can be useful when directly visualizing computational results.

3.3.3.3 Texture management

The hardware used for graphics can partly also be used via CUDA. Placing data that
is only to be read in texture memory instead of global memory can have significant
performance benefits, especially because of caching and additional functionality.
Some region of memory is declared as texture by creating a texture reference via the
host run-time component at compile time:

texture<Type[, Dim][, ReadMode]> texName;

Type specifies the type of the elements returned, when fetching the texture. These
elements are called texels , short for ”texture elements”, and can be of any of the
basic integer or single-precision floating-point types or even of any of the vector
types defined in the common run-time component.

Dim specifies optionally the dimensionality of the texture reference and can be chosen
1 (default), 2 or 3.

ReadMode is another optional parameter that allows different interpretation of a 8-
or 16-bit integer data type. When setting ReadMode to cudaReadModeNormalized-
Float, the value is actually returned as floating-point type, where the full range of
the integer type is mapped to [0.0, 1.0] for unsigned integer types and [−1.0, 1.0]
for signed integer types. When using the default cudaReadModeElementType, no
conversion is performed.

During run-time, further attributes of a texture reference can be modified using
functions of the host run-time component. It can be specified if texture coordinates
are to be normalized or not, texture filtering can be enabled and the addressing
mode can be selected.
By default, textures are referenced using floating-point coordinates in [0, N) where
N is the size of the texture in the corresponding dimension. Normalized texture
coordinates are to be specified in the range [0.0, 1.0) for each dimension instead and
are thus independent of the texture size.
If the texels are of a floating-point type, (bi-)linear texture filtering may perform
low-precision interpolation between neighboring texels. Based on where the texture
coordinates fell between the texels, the surrounding texels are read and the return
value of the texture fetch is interpolated. For one-dimensional textures, simple linear
interpolation is performed for two-dimensional textures, bi-linear interpolation is
used.
The valid address space of the texture can be enlarged by using the addressing modes
clamping and wrapping . Clamping sets coordinates values that are out of range to
the maximum or minimum value, respectively. This is the default addressing mode
for both normalized and unnormalized coordinates. For normalized coordinates,



3.3. CUDA 37

wrap addressing can be used for e.g. periodic signals. It uses only the fractional
part of the texture coordinate; for example, 1.25 is treated as 0.25 and -1.25 is
treated as 0.75.

Naturally, texture references have to be bound to some specific device memory during
run-time. Again, the host run-time component provides the respective functionality
to bind references to linear memory or CUDA arrays, e.g. via cudaBindTexture

and cudaBindTextureToArray for the run-time API. The aforementioned features,
multi-dimensionality, texture filtering, normalized coordinates and out-of-range ad-
dressing, can only be used in connection with CUDA arrays.

The memory management functions of the APIs offer possibilities to automatically
convert ordinary arrays to CUDA arrays during host→device memory copies and
vice-versa. Within a Kernel, textures are read via texture fetch functions of the
device run-time component.

3.3.4 NVCC and Debugging

The CUDA toolkit contains a compiler driver called nvcc, that is actually a gcc (Gnu
Compiler Collection3) mimicking wrapper around a more complicated compilation
process. A CUDA program usually includes C/C++ files (.c or .cpp) and CUDA
files (.cu) containing mixed host and device code. For C/C++ files, nvcc simply
invokes the native compiler on the system, CUDA files are further processed[Half08]:
First, a preprocessor by the Edison Design Group (EDG4) called cudafe separates
host from device code by writing it into separate files; the C/C++ host code is
again forwarded to the default system compiler. The device code is then processed
by a modified version of the Open64 compiler5, an open source C/C++ compiler,
originally developed for the Intel IA-64 (Itanium) architecture. This modified ver-
sion is called nvopencc and generates PTX code (Parallel Thread eXecution), an
assembly code that is configured and compiled for the target machine at installation
time [NVID08d]. PTX is independent of the actual available processor and supports
besides others unlimited virtual registers of different sizes, branch prediction and
vector memory accesses. The PTX code is then passed to ptxas a variation of OCG
(Optimized Code Generator), a low-level compiler for graphics codes by NVIDIA.
This compiler is built into the graphics driver for doing just-in-time compilation of
graphic codes, it allocates registers and schedules the instructions according to the
chip being used. Using PTX as intermediate code shall make the execution of exist-
ing code on future hardware as efficient as possible without further modifications.
The output is a device specific binary object (.cubin) that can be loaded and ex-
ecuted on the device using the CUDA driver API (cf. 3.3.3.2), or it can be linked
to the generated host code, that now contains a translation of the execution con-
figuration directive (3.3.3.1) into the necessary run-time start-up instructions. An
overview of the whole compilation trajectory is given in figure 3.10.

nvcc can be invoked with a variety of common compiler options, such as for macro
definition, include/library path setting and for compilation process steering. Inter-
esting options are the already mentioned -use_fast_math, that substitutes math

3 http://gcc.gnu.org 4 http://www.edg.com 5 http://www.open64.net

http://gcc.gnu.org
http://www.edg.com
http://www.open64.net
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Figure 3.10: The CUDA compilation trajectory as performed by nvcc

functions of the common run-time library by faster GPU specific implementations,
or -keep and -dryrun that make nvcc keep all temporary files (e.g. .ptx) and list
all steps performed. The option -arch sm_13 is really crucial when using e.g. the
double precision functions provided by compute capability 1.3. Not specifying this
option leads to implicit usage of the single precision pendants.
One of the most important flags is -deviceemu, that instructs nvcc to only emulate
the complete device functionality. Programs compiled with this option run on the
CPU without the need for CUDA enabled hardware. The great advantage is that
now all host functions can be called from device functions and all device memories
can be accessed by host functions for debugging. Besides others, nvcc provides the
compiler constant __DEVICE_EMULATION__ to declare separate code segments only to
be compiled in emulation or non-emulation mode. A detailed description of nvcc’s
workflow can be found in [NVID08a].

3.3.5 Performance remarks

Besides algorithmic approaches, hardware-aware programming is the key to running
kernels close to peak performance.[NVID08b] Since host↔device bandwidth is a
possible bottle neck, a GPU program should perform as many arithmetic operations
per memory access as possible and allow a high number of threads per SM, such that
the warp scheduler can hide memory accesses with calculations. A detailed list of
built-in function instructions and their expense in cycles can be found in [NVID08b].
Meanwhile, the available memory bandwidth should be maximized for each category
of memory. Extensive testing of the GPU’s functionality and performance is done in
chapter 4, section 4.3.2 deals especially with the types of memory and their usability.

3.3.5.1 Memory bandwidth exploitation

While register accesses usually do not create an overhead, read-after-write depen-
dencies and bank conflicts can lead to extra clock cycles per instruction. Only as
soon as there are at least 192 active threads per SM, the read-after-write delays can
be ignored [NVID08b]. Bank conflicts are tried to be avoided by the the compiler
and thread scheduler, that achieve best results when the number of threads per block
is a multiple of 64. Thus a rule-of-thumb could be to choose the number t of threads
per block 192 ≤ t = k · 64, k ∈ N.

When reading a float from local or global memory 400 to 600 clock cycles are needed
as there is no cache for acceleration. The warp scheduler hides this latency efficiently
as long as there are sufficient independent arithmetic operations following this read
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or there are enough other threads waiting for execution. Memory accesses of threads
of a half-warp (first or second half of a warp) are automatically coalesced into a single
transaction if the words accessed lie in the same segment of size equal to

• 32 bytes if all threads access 8-bit words,

• 64 bytes if all threads access 16-bit words,

• 128 bytes if all threads access 32-bit or 64-bit words.

This achieves a bandwidth that is an order of magnitude higher for 32-bit accesses,
four times higher for 64-bit accesses and still two times higher for 128-bit. Coalesced
32-bit accesses deliver a little higher bandwidth than coalesced 64-bit accesses and
a noticeably higher bandwidth than coalesced 128-bit accesses.

Generally, it is useful to copy values that are to be used several times into shared
memory or even recompute them if this space is limited. As mentioned before, shared
memory can be accessed without overhead as long as there are no bank conflicts.
The shared memory is organized in 16 simultaneously accessible banks, where succes-
sive 32-bit words are assigned to successive banks. When the threads of a half-warp
access shared memory and two addresses of a request fall in the same memory bank,
a bank conflict occurs and the access has to be serialized. The hardware splits a
memory request with bank conflicts into as many separate conflict-free requests as
necessary. There is also a broadcast mechanism that reduces the number of bank by
allowing a 32-bit word to be read and broadcasted to several threads simultaneously.
Figure 3.11 shows an example access pattern that might cause a bank conflict: If
the word from bank 5 is chosen as the broadcast word during the first step, no bank
conflict occurs. Otherwise, one of the threads trying to access bank 5 is served to-
gether with all other threads not trying to access bank 5. In a second step the word
form bank 5 is broadcasted to the remaining threads.

If two or more threads of a warp try to write to the same location in global or
shared memory with a non-atomic instruction, the number of serialized writes to
that location and their order is undefined, only one of the writes is guaranteed to
succeed. Atomic writes are serialized but the order is still undefined.

Figure 3.11: Example shared memory read access pattern that causes a bank conflicts
if bank 5 is not chosen for broadcasting in the first place
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3.3.5.2 Branching

Another source for performance losses is branching within warps. As mentioned
before, because of the SIMD architecture, divergent threads have to be processed in
serial. Thus, branching should in best case occur at warp boarders, e.g. by evaluating
threadIdx.x/warpSize. As long as there is no block wide synchronization, different
warps may be at different points in their program at the same point in time.
The compiler is also able to do simple branch prediction: The compiler replaces an
if or switch instruction with predicated instructions if the number of instructions
controlled by the branch condition is less or equal 4. If the compiler determines
that the condition is likely to produce many divergent warps, it is less or equal 7.
The predicate is a per-thread condition code that is set to true or false based on
the controlling condition. Instead of branching, each instructions gets scheduled for
execution, but only the instructions with a true predicate are actually executed.
Instructions with a false predicate do not write results, and also do not evaluate
addresses or read operands.

3.3.5.3 Block size to grid size to stream number ratio

An optimal distribution of work load is achieved by occupying all SM as efficiently
as possible. Clearly, there have to be at least as many thread blocks as there are
multiprocessors in the device. But running only one block per SM would force the
multiprocessor to idle during synchronization and memory reads if there are not
enough threads per block to cover the load latency. The number of threads per
block should be chosen as a multiple of the warp size to avoid wasting resources
with under-populated warps, or better, as motivated in 3.3.5.1, as a multiple of 64.
Choosing a high number of threads per block facilitates efficient time slicing, but
reduces the number of registers available per thread. This might even prevent a
kernel from launching at all, if it tries to allocate more registers than allowed by the
execution configuration.
Whenever possible, two or more blocks should be active on each multiprocessor to
allow overlap between blocks that wait and blocks that can run. But running twice as
many blocks as there are multiprocessors means also allowing only half the amount
of registers and shared memory to be allocated per block.
The number of registers available per thread is thus predictable through

R

B × 32⌈T/32⌉

where R is the total number of registers per SM, B is the number of active blocks
per SM and T is the number of threads per block.
In order to choose an optimal B and T , the memory usage of a kernel (registers, as
well as local, shared and constant memory) can be examined when compiling with
the -ptxas-options=-v option. It has also to be kept in mind, that variables of
double or long type occupy two registers at once. The compiler actively tries to
minimize register usage and hence maximize the multiprocessor occupancy, i.e. the
ratio of the number of active warps per SM to the maximum number of active warps
physically possible.
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The number of blocks per grid should be at least 100 if one wants it to scale to
future devices; 1000 blocks will scale across several generations [NVID08b].

Taking also memory transfers into account, utilization of streams is inevitable in
order to achieve the shortest total computation time. When transferring memory
between host and device it is in general more efficient to transfer a larger set of
data at once, but the fact that kernel execution can only start after the transfer is
completely finished, single transfers may have advantages. Two examples in figure
3.12 show transfer time to kernel runtime ratios, when single transfers might be
recommendable:

Figure 3.12: Timing differences between execution as single kernel or stream of sub
kernels

Both examples predict the resulting scheduling when executing a kernel K with
input data I and output data O on the device in different fashions. In example
A, one big kernel is subdivided into eight partial kernels that are then executed
as streams. Although the total data transfer time is increased by 12.5 % because
of waiting for kernel results, the total execution time could be reduced from 32
to 18 thanks to parallelization. Example B schedules eight independent kernels
that each only need half of the available SMs. Scheduling these kernels as one
collective kernel would take 32 time units, while in this case using one stream for
data transfers and one for kernel execution would achieve suboptimal 34 time units.
Exploiting the low resource utilization of the kernels, introducing a second stream
for kernel execution would reduced the total execution time to 19 time units. As
unfortunately this concurrent kernel execution is up to now not supported by the
API, calling different __device__ functions according to e.g. even and odd block
numbers (albeit sacrificing shared memory and registers) could be a work-around.

3.3.5.4 Scalability

The keen competition of graphics card manufacturers in the gaming market led to a
high increase of GPU computing power in the past years. Mainly due to increased
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parallelism, new graphic chip generations performed percentally and absolutely bet-
ter then respective main stream CPUs and even better then predicted by Moore’s
Law.

In the future there are multiple possibilities of further increasing performance: High-
er clock rates, more cores and shared memory or cache per GPU or more GPUs per
board. Most of these methods would lead to a linear performance increase for many
parallel programs.
But also the whole GPU accelerated computing system can be scaled: Several graph-
ics cards can be used on the same mainboard if it provides several PCIe slots. Con-
sumer mainboards meanwhile offer up to 4 PCIe slots, but only two of them are
provided the full memory bandwidth and only few mainboards provide yet double
spacing between the slots for the large graphics card’s fans and coolers. It is though
possible to install PCIe switches and run several more graphics cards on the same
PCIe port (up to 16), but the bandwidth is similarly decreased.
Of course, a cluster can be build by connecting several GPU accelerated worksta-
tions or building a rack of GPU servers. Such system are offered currently only by
NVIDIA under the name Tesla. A Tesla S1070 server for example, contains four
GT200 GPUs together with 16 GByte memory in one unit of a 19-inch rack. The
accumulated computing performance is 3.74 TFLOPS in single precision because of
a higher core clock. Provided enough monetary resources, such a rack server is easily
scalable.

3.4 Summary

Multiple accelerator technologies are suitable to take on tasks in HPC, these in-
clude GPGPU, FPGAs, ClearSpeed and the Cell processor. Each technology offers
advantages like high single precision performance (GPGPU), flexibility (FPGAs),
advanced software tools (ClearSpeed) and high external memory bandwidth (Cell),
but none can provide all at once.

NVIDIA’s CUDA technology constitutes a new programming paradigm in GPGPU:
Nearly all of the available hardware can be easily programmed in a C similar fashion
without having to care about the actual graphics pipeline. As the hardware is made
up of dozens of similar SIMD processing units, programming is done in a massive
multithreading fashion. The scheduling of all these threads is done in hardware for
the lower two levels of parallelism, while the host manages streams as the third level:

• Thread parallelism allows the parallel execution of several threads within
a tread block. A block is divided into warps of 32 threads that are ran by
the warp scheduler in parallel on the same processing unit and share its re-
sources. Ideally threads of a warp run instruction synchronized, but a barrier
synchronization is also available.

• Block parallelism provides the parallel execution of several blocks within
a grid. The block scheduler divides the blocks among the available multi-
processors (several processing units accompanied with shared memory) where
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they run exclusively and uninterrupted. A synchronization mechanism among
blocks is not provided, but manually implementable.

• Stream parallelism allows the concurrent execution of memory transfers and
kernel execution.

The programmer is free to balance parallelism between these levels, but this decision
can have a huge performance impact. By providing a profiler and an emulation debug
mode CUDA makes GPGPU developed much easier, but the programmer still has
to be well aware of the underlying hardware architecture to achieve best results.
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4. Basic performance evaluation of
the NVIDIA GT200 GPU

The tests conducted in this section evaluate the performance of the ENGTX280
graphics card using key scientific kernels utilized by the majority of equation solvers.
First the test configuration is presented and basic bandwidth tests are conducted.
Based on this, typical tasks such as dot product computation, matrix-matrix multi-
plication, sparse matrix-vector multiplication and fast Fourier transformation are ran
on the graphics hardware. In addition to this, multi-GPU computing is examined,
as well as the interoperability with Fortran.

4.1 Test configuration

A standard workstation offering two PCIe slots was upgraded with two ASUS EN-
GTX280 graphics cards and a more powerful energy supply in order to turn it into
a CUDA workstation. Its components and the software used in the following tests
are listed in table 4.1.
It has to be noted that the low front side bus clock of 533 MHz is a strongly lim-
iting factor. Currently there are chipsets, available offering 800 MHz and dynamic
overclocking. Furthermore only one of the PCIe slots is connected with 16 lanes to
the P965 northbridge, the second one can only access 4 lanes, a fact that will be
reflected in the bandwidth test.

4.2 Bandwidth tests

The following tests copy data packages of various sizes from the system RAM to the
global memories of both devices and back. It was experimented with pageable and
pinned memory, i.e. page-locked memory, that cannot be moved by the operating
system. The pro’s and con’s of this memory allocation method are explained in
3.3.3.2.
The data varied in size between 1 kb and 512 MB and were each transferred ten
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Hardware

Processor Intel Core 2 Duo E6600

RAM 2x Corsair Value 1 GB

Mainboard ASUS P5B Deluxe

Southbridge ICH8R

Northbridge P965

CPU Clock 2.4 GHz

FSB 266 MHz

Graphics Card 2x ASUS ENGTX280

Software

OS OpenSuse 10.2

Kernel 2.6.26.5

CUDA Driver 177.13/177.67

nvcc 1.1

gcc 4.1

icc/ifort 10.1

CUBLAS/-FFT 1.0

MKL 10.0.1.014

Table 4.1: Workstation configuration used for testing

times en bloc in order to obtain measurable results. The whole test was started five
times in a row and the median value was plotted in the following charts. Figure
4.1 shows the achieved host-to-device bandwidth and figure 4.2 the device-to-host
bandwidth.

From the charts one can clearly tell the effect of the lower number of lanes for the
second PCIe slot: The maximum bandwidth achieved for device 1 (≈ 650 MB/s) is
about one fourth of the maximum bandwidth achieved for device 0 (2570 MB/s).
Furthermore two interesting effects occur in connection with pageable memory.
Firstly, the maximum bandwidth achieved on device 0 is significantly lower than
for pinned memory and secondly, there is a step in speed-up of memory transfer
beginning at 210 kB = 1 MB, most clearly visible in figure 4.2.
The lower overall bandwidth for pageable memory is caused by the operating system
that manages swapping according to current load conditions. For the slower device
1, the bandwidth is just not high enough to raise this effect.
The reason for the step at 1 MB can only be traced back to the the operating system,
influences of the system BIOS are improbable. The phenomenon was not further
analysed as it was not to be expected that this bandwidth limitation can be fixed.
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Figure 4.1: Host-to-device bandwidth test results
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Figure 4.3: Device-to-device bandwidth test results

A general rule of thumb for transferring memory from and to the host could be to
send at least 4 MB and use pinned memory whenever possible.

The bandwidth of the devices’ global memory was also subject of experiments. As
stated in 3.3.1 the theoretical peak bandwidth is 138 GB/s and independent from
the system setup. As expected, both devices showed nearly the same performance
and reached up to 115 GB/s. The test setup was the same as before, the median of
5 tests is plotted in figure 4.3.

4.3 Key scientific computation kernels

NVIDIA provides currently two kernel libraries that accelerate computations on the
GPU and are callable without any CUDA knowledge from any C/C++ or Fortran
program, these are BLAS 1 and FFT 2 implementations. The corresponding libraries
are called CUBLAS and CUFFT.

1 Basic Linear Algebra Subprograms 2 Fast Fourier Transformation
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4.3.1 BLAS functions

The BLAS are portable, high- performance implementations of computational ker-
nels. A reference implementation is available in Fortran 77 from www.netlib.org/blas
as well as a C interface. The kernels are divided into three levels, with Level 1
BLAS providing scalar, vector and vector-vector operations, Level 2 BLAS provid-
ing matrix-vector operations and Level 3 BLAS proving matrix-matrix operations.
As optimized implementations are available for a variety of platforms (e.g. ACML
by AMD, MKL by Intel, ESSL by IBM, SPL by SUN) the BLAS often form the
building blocks of high performance linear algebra software.

In the following tests, a subset of the BLAS was chosen for evaluating the perfor-
mance of the GPU in production code. From Level 1 BLAS, axpy, dot and nrm2
were chosen and gemm from Level 3 BLAS. For each operation a small programme
was written that performs this kernel on randomly generated data using CUBLAS
and the Intel MKL library.

All the above mentioned operations are designed for dense vectors and matrices. The
also intensively used operations on sparse matrices are not part of the original BLAS
set and hence not part of CUBLAS. In order to assess at least the performance of
sparse matrix-vector multiplication spmv, this kernel was manually implemented in
CUDA and compared against the respective function of the SparseBLAS library by
Intel, see 4.3.2.

Each kernel has been ran and timed five times on the faster device 0 using pinned
memory on the host side, plotted is the median result. As the GPU’s raw com-
putational performance is partly enormously higher then its performance including
transfers or the CPU’s performance, most results are plotted using a logarithmic
ordinate.

Scaled vector addition - saxpy/daxpy

This kernel multiplies the vector x of dimension n by a scalar α and adds the result
to the vector y.

for ( i =0; i<n ; i++)
y [ i ] += alpha ∗ x [ i ] ;

The single-precision version holds the prefix s, the double precision version d.

This kernel executes 2n operations on 2n + 1 values. Thus, we have in the case
of saxpy approximately 4 operations per byte = 0.25 FLOP/B and for daxpy ap-
proximately 0.125 FLOP/B. Assuming an average maximum host-to-device-to-host
memory bandwidth of 2250 MB/s, we get a rough upper performance limit of about
560 MFLOPS for saxpy and 280 MFLOPS for daxpy. Taking also the rule of thumb
from 3.3.5.1 into account, that we should provide at least 192 threads per SM, we can
only expect the GPU to achieve peak performances for vectors dimensions greater
then 192 · 30 = 5760.

The actual results in figure 4.4, show a maximum performance including transfer
time of 390 MFLOPS for saxpy and 196 MFLOPS for daxpy. This is reasonable

www.netlib.org/blas
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Figure 4.4: saxpy and daxpy performance test results

as the limit calculation above did not include instruction overheads and calculation
time. Furthermore, at a vector dimension of about 5760, only half of the final peak
performance could be reached, indicating that in praxis far more threads are needed
to fully utilize the SM’s performance.

In comparison to MKL, the GPU achieves only half the performance when taking
transfer times into account. Surely saxpy is not a kernel that should solely be
executed when porting existing software, but as soon as it is part of a programme
residing on the GPU, the speed-up compared to MKL would be 19.5 for saxpy and
9 for daxpy, given sufficiently large vector dimensions.

Still, this is far from the theoretical peak performance, but one has to keep in mind,
that CUBLAS is in an early stage of development. For example, it does not seem
to use the SFU’s MAD capability for saxpy, what would lead to another increase of
performance by 50 %. Another point is, that this kernel does not reuse any data.
The high latencies to fetch data from global memory are playing an important role
here, too.

Vector dot product - sdot/ddot

This kernel computes the dot product of a vector x and a vector y:

for ( r e s u l t =0, i =0; i<n ; i++)
r e s u l t += x [ i ] ∗ y [ i ] ;

Again, sdot is the single-precision version and ddot is the double precision version.

Using the scheme above, the computational intensity would again be 0.25 FLOP/B
for sdot and 0.125 FLOP/B for ddot, as there would be 2 operations per 2 data ele-
ments. But while the multiplication in this kernel can be compared to the addition
of axpy, the second operation can be implemented differently here: The multiplica-
tion by α in saxpy can be done in

⌈
n

240

⌉
steps in parallel, the parallel reduction in

dot needs only
⌈

log n
240

⌉
steps.
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Figure 4.5: sdot and ddot performance test results

The results in figure 4.5 show hence a significantly higher peak performance, 650
MFLOPS for sdot and 325 MFLOPS for ddot, including the transfer times. As this
increase cannot only be caused by the lower complexity, it is assumable, that the
hardware resources have been used more efficiently here.

Still, when including the transfer times, the GPU cannot yet compete with the
optimized MKL, that achieves twice the performance on the CPU. Running the
kernel on the GPU with all memories initialized, the speed-up for CUBLAS over
MKL is again about 19, this time for both sdot and ddot, given sufficiently large
vectors.

Euclidean norm computation - snrm2/dnrm2

For a n-vector x, this kernel computes the Euclidean norm ‖x‖2 =
∑n

i=1 x
2
i :

for ( r e s u l t =0, i =0; i<n ; i++)
r e s u l t += x [ i ] ∗ x [ i ] ;

For single-precision data, the routine is called snrm2 for double-precision dnrm2.

While the computations are the same as for dot, the data intensity is cut in half,
as y = x. The algorithm is still expected to be memory bound. Thus cutting the
amount of data needed in half, would result in a doubling of performance (incl.
transfers). Also the plain computation should run faster as now data is re-used.
Figure 4.6 shows the expected results, the performance including transfers nearly
doubled from 0.65 to 1.28 GFLOPS and also the plain calculation performance
increased from 24.8 to 29 GFLOPS for single-precision, double precision results
increased similarly.

The MKL shows a strange behaviour for nrm2: While the snrm2 performance does
not drop for large vectors as much as for dot and keeps a twice higher level, dnrm2
reached only one fourth of the ddot performance. The speed-up would this ways
calculate to 12 for snrm2 and 90 for dnrm2 for large vectors. Of course, these are
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Figure 4.6: snrm2 and dnrm2 performance test results

no meaningful results, as the MKL’s dnrm2 implementation should be avoided in
favour of ddot.

General matrix product - sgemm/dgemm

This kernel computes a scaled matrix-matrix product of two general matrices and
adds it to a third general matrix, i.e. there is no information available, if the matrix
is symmetric, hermitian, etc.. The kernel is able to handle non-quadratic matrices
and transposed matrices, but for this test, non-transposed quadratic matrices where
chosen. With the two scaling factors α and β the algorithm computes α ·A ·B+β ·C
and stores the solution in C:

for ( i =0; i<n ; i++)
{

for ( j =0; j<n ; j++)
{

C[ i ] [ j ] ∗= beta ;
for ( k=0; k<n ; k++)

C[ i ] [ j ] += alpha ∗ A[ i ] [ k ] ∗ B[ k ] [ j ] ;
}

}

This time, approximately 3n3 operations are executed on approximately 3n2 data
elements using the naive implementation above. The resulting computational inten-
sity would be n

4
FLOP/B for single-precision and n

8
FLOP/B for single precision,

what results in 0.56n GFLOPS SP and 0.28n GFLOPS DP. Taking the theoretical
peak performances from 3.3.1, we get

993.12 = 0.56nSP FLOP/B ⇐⇒ nSP = 1774 and

77.76 = 0.28nDP FLOP/B ⇐⇒ nDP = 278

This means that for matrix dimensions larger then 1774 for sgemm and 278 for
dgemm the kernel is not memory bound anymore, but limited by the computational
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Figure 4.7: sgemm and dgemm performance test results

power of the GPU. These are again no hard boundaries as their basis was a naive
implementation and several more factors were left out.

The results in figure 4.7 show for sgemm a behaviour as predicted, at matrix dimen-
sions of about 211 = 2048 the results with and without transfer times are already
quite near each other and approach each other further. For dgemm, a little larger
dimensions then expected are needed, but at 29 a similar behaviour becomes visi-
ble. It is hence advisable to use the GPU for any gemm if the matrix dimensions
exceed 28 = 256, as this is the point when, even with transfer times, CUBLAS is
faster then MKL. For larger dimensions the speed-up increases for sgemm up to
10 (9 incl. transfers) and up to 4.3 (3.9 incl transfers) for dgemm. These values
are only achieved for matrix dimensions equalling a power of 2. This early ver-
sion of CUBLAS shows significant drops in performance for non-power-of-2 matrix
dimensions - still performing better then the MKL, though with lower advantages.

4.3.2 Sparse matrix-vector product

The multiplication of a sparse matrix and a general vector, short spmv, is part of
many scientific computation kernels, e.g. the PDE solver presented in section 6.1.1.
For a sparse matrix A = (ai,j), and a vector x = (xi) it computes a vector y = (yi)
by

∀ai,j 6= 0 : yi = yi + ai,j · xj (4.1)

As depicted in figure 4.8, the matrix A is primarily populated by zero entries. The
number of non-zero entries lies - depending on the definition of sparsity - in O(n) or
O(n logn) for a square matrix of dimension n2.

In contrast to its importance stands the performance of spmv: Conventional im-
plementations on single-core CPUs achieve only about 10 % of the systems peak
performance [Vudu03], and modern multi-core CPUs depend on extensive manual
optimization to achieve very good results [Supe07].
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A x y

Figure 4.8: Sparse matrix vector multiplication, spmv

Again this is due to the impact of the memory system. While gemm executes O(n3)
on O(n2) data elements, spmv executes on O(n) or O(n logn) data elements and
needs the same number of operations, cf. (4.1). As now the number of operations
and data elements are lying in the same class of complexity, the processor cannot
hide memory latency by additional computations. Furthermore the entries of A are
only needed once in contrast to gemm, what makes caching these values ineffective.
Only the values of x and y might be used again, but, because of the sparsity, not in
a consecutive fashion.

In order not to intensify the possible problems by storing the zero-entries explicitly
in a dense format, special sparse data formats can be used that only use O(n)
or O(n logn) values. There are a variety of formats, optimized for many different
matrix structures [BBCD+94], two of them, COO and CSR, are known to achieve
good results when nothing about the matrix’s structure is known [Vudu03] and shall
thus be shortly explained here.

Coordinate storage - COO This is a simple format that is implemented usually
by using three data arrays to store the entries ai,j consecutively. The first
array holds the value of a non-zero entry ai,j, the second and third elements
hold the respective row and column indices i and j. Assuming, the matrix has
k non-zero entries, it can be stored using 3k values.

Compressed sparse row storage - CSR This format usually also used three ar-
rays, here named val, ind and ptr. Every row of A is treated as a sparse
vector, making it possible to easily access a certain row and iterate over its
entries. All non-zero entries of ai,j are again stored consecutively in the array
val and the respective column indices j are placed in ind. The third array ptr

holds this time only the indices of the first element of each row with respect
to val and ind, i.e. ptr[i] is the offset of the ith row. An additional entry
ptr[row number m+1] stores the number of non-zeros k, as shown in figure
4.9.

In the case of k ≫ m only ≈ 2k values are needed to store A.

In order to benchmark the spmv performance on CPU and GPU , a basic set of
routines based on CSR has been developed for single and double precision values.
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Figure 4.9: Compressed sparse row format for sparse matrices

A x y

Figure 4.10: Thread blocking for spmv

For testing a square matrix of dimension n was filled with n logn randomly placed
random values and a dense vector of length n was randomly generated. On the CPU,
the multiplication was executed via the mkl_scsrmv kernel of the SparseBLAS li-
brary, the GPU kernel was manually implemented in CUDA. As mentioned before,
data intensity and computational complexity are both in O(n logn), making the ker-
nel’s execution time mainly depending on the memory transfers. The measurements
plotted in figure 4.11 relate to a basic scheme for csrmv, explained hereafter. The
execution times including transfers of all other kernels developed later, did not differ
remarkably, that is why these plots are omitted.
The basic implementation is based on (4.1), it iterates over all rows and their entries
by

foreach ( i in rows ) {
for ( j=ptr [ i ] ; j<ptr [ i +1] ; j++)

y [ i ] += va l [ j ] ∗ x [ ind [ j ] ] ;

This scheme is refined using the thread blocking technique shown in figure 4.10, that
is used to exploit the power of multi-core CPUs. The matrix is divided row-wise
into blocks, in most cases according to a fixed row number or an equally distributed
number of non-zeros per block. Each core is then responsible for computing the
entries of y belonging to its block. The easiest way to adopt this technique for the
many-core GPU is to create one thread for each row, that performs the inner loop
of the scheme above. The kernel in Listing 4.1 was used in figure 4.11.
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Figure 4.11: Basic scsrmv and dcsrmv implantation performance test results

g lobal void spmv kernel ( int m, f loat ∗ val , int ∗ pnt , int ∗ ind ,
f loat ∗ x , f loat ∗ y)

{
int row = blockIdx . x ∗ blockDim . x + threadIdx . x ;

i f ( row < m) // b l o ck d imens i on s may be g r e a t e r than the row count
{

int rowStart = pnt [ row ] ;
int rowEnd = pnt [ row+1] ;
f loat sum = 0 ;

for ( int c o l=rowStart ; co l<rowEnd ; c o l++)
sum += val [ c o l ] ∗ x [ ind [ c o l ] ] ;

y [ row ] = sum ;
}

}

Listing 4.1: Simple spmv kernel

One weakness of this implementation is the fetching x[ind[col]], as it is indirect
and can hardly be coalesced, cf. 3.3.5.1. Another weakness is, that the number
of non-zeros per row is variable, what creates divergences among the threads, cf.
3.3.5.2. As x is only accessed for reading, one idea to speed-up the data transfer
is to declare it as a texture and use the tex1Dfetch instruction for reading, as ex-
plained in 3.3.3.3. Although reads are now cached in theory, the random access
pattern of x will result in a high number of cache misses. Also, as val and ind are
read consecutively, the hardware is already able to perform coalesced reads, such
that declaring these arrays as textures can only be beneficial if prefetching makes
global memory read requests superfluous. Although, the values cannot be re-used,
the texture will probably not drop them out of cache immediately, and thus uses its
size only to limited extent.
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These predictions are partly confirmed by the test results shown in figure 4.12, that
measured the raw computational performance without host memory transfers. Up
to a size, until the matrix data can still be fit into the memory managed by a sin-
gle controller, the basic kernel competes very well. For larger data, the texture L2
cache (cf. 3.3.1) seems to achieve more cache hits and accelerates nearly every tex-
ture combination. The texture unit seems to gain best performance for consecutive
float data (combinations with val as texture) and fetches with the same access
pattern (x,val/ind). Declaring only the integer data in ind or solely x gave now
big advantage for large data sizes, and their combination resulted in a even worse
performance compared to the basic kernel. Adding val and declaring every major
data array as texture, can boost the performance again, but does not achieve top
results. This is most probably due to the limited cache size, that is overcharged with
three large textures.
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Figure 4.12: scsrmv performance test results with different data declared as textures

The algorithm above was implemented such that, transfer times are kept low, by
copying val, ind and ptr in a single data block into GPU memory and using pointers
to keep track of the exact starting positions. Declaring an area of memory as texture,
that was not particularly allocated with cudaAlloc, makes the usage of an offset to
the texture reference necessary, that must be respected when using texture fetches. It
was tested, if these offsets create a read overhead compared to separately allocating
and transferring memory for all arrays. The result was a marginal improvement
in performance for those cases, that were running with less performance then the
original version at maximum matrix dimensions and a slight decrease in performance
for those cases running faster then the original version. Though the differences were
only marginal, there is probably in fact a read overhead when being forced to use
offsets, that is partly compensated by the reduced transfer times through the block
transfer.

Texture fetches are yet only available for float data, in order to test double precision
performance, a workaround had to be implemented: As textures of int2 are allowed,
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the double arrays were declared as such and after fetching converted using the
intrinsic function __hiloint2double. Of course this makes further preparations
needed, that are not included in figure 4.13, that only shows the calculation time.
The results differ widely from the float version. Firstly not a combination, but
the single declaration of a texture gave high performance, surprisingly the highest
for x. Again, up to a certain matrix size, the basic kernel achieved best or second
best results. The combination of two or three textures did decrease the performance,
again probably due to the limited cache size, that now can only store half the number
of entries.
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Figure 4.13: dcsrmv performance results with different data declared as textures

The aforementioned algorithm versions were implemented in a way, that transfer
times are kept low, by copying val, ind and ptr in a single data block into GPU
memory and using pointers to keep track of the exact starting positions. Declaring
an area of memory as texture, that was not particularly allocated with cudaAl-

loc, makes the usage of an offset to the texture reference necessary, that must be
respected when using texture fetches. It was tested, if these offsets create a read
overhead compared to separately allocating and transferring memory for all arrays.
The result was a slight improvement in performance for those cases, that were run-
ning with less performance then the original version at maximum matrix dimensions
and a slight decrease in performance for those cases running faster then the original
version. A possible explanation is, that there is in fact a read overhead when being
forced to use offsets, but it can only partly compensate the prolonged transfer times
through separate memory transfers.

It was furthermore experimented with the GPU’s shared memory . The idea was, to
create an array in shared memory of the size of a thread block and let each thread
of the respective block fetch one value of x. This way x can be read coalescedly
and accessed quickly by the threads needing its values. This technique of manual
prefetching is quite useful for a structured matrix, for an unstructured one, that is



58 4. Basic performance evaluation of the NVIDIA GT200 GPU

furthermore quite sparse, the effect is rather low or even negative, as shown in figure
4.14. In order to maximize the number of shared memory hits, the thread block size
was chosen as large as possible, in this case 512 for both, scsrmv and dscrmv. This
means, that at most the first 512 values of x are cached. The results given in figure
4.14 show, that the prefetching is only beneficial for a small number of cases. Also
for matrix dimensions smaller then 1024, the basic kernel was faster in 85 % of the
test cases.
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Figure 4.14: scsrmv and dcsrmv performance test results with shared memory use

Finally, a whole different approach to spmv was tested, which is based on seg-
mented scan. The underlying scan algorithms were developed by Sengupta et al.
in [SHZO07] and implemented in a library called CUDA Data Parallel Primitives,
short CUDPP3.
The sparse matrix-vector multiplication of CUDPP is also based on CSR and cur-
rently only available in single precision. The idea is to reduce the number of divergent
threads, caused by variable numbers of non-zeros per row. CUDPP uses a tempo-
rary array product to compute every product product[i] = val[i] * x[ind[i]]

in a first step. While doing so a second additional array flag of Boolean type is
set to 0 for every entry. Afterwards a second kernel iterates over ptr and sets every
the flag for every first entry in a row to 1. Now that, one segment per row was
created, a scan (backward segmented inclusive sum scan) can be executed on the
freshly marked row beginnings, that adds the values in product up and saves the
row sum in the last element belonging to the row. In a last step only the values in y

have to be set. The trick is, to use a scan routine to do the addition and not a loop
as in the basic algorithm. On the other hand several kernel launches are necessary,
each creating a start overhead.
In order to correctly set the additional array structures, CUDPP hides memory
allocation and takes only CSR data in host memory as input data. Thus it was not
possible to measure the raw computational performance and figure 4.15 shows only
measurements including transfer times.

3 www.gpgpu.org/developer/cudpp

www.gpgpu.org/developer/cudpp
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Obviously, for small matrix sizes and thus short kernel run-time, CUDPP cannot
make use of its more sophisticated technique. Only for matrix dimensions larger
then 4096× 4096, the basic implementation drops behind, and for the largest possi-
ble size, even the MKL’s performance can nearly be reached.
A big disadvantage is the hidden memory management, as the current CUDA driver
version suffers from errors that occur in connection with frequent allocation and
deallocation of device memory. Because of that, it was not possible to time CUDPP
automatically, but every matrix size had to be measured in a new process in order
to avoid program or system crashes. Though the results are promising for large
matrices, currently CUDPP is not suitable for variable matrix data processed in a
loop.
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Figure 4.15: scsrmv performance results using CUDPP

4.3.3 Discrete Fourier transformation - DFT/FFT

The discrete Fourier transformation (DFT) does not only have many applications in
signal processing but can also be used in 2D Poisson solvers with Dirichlet boundary
conditions [BuGN70]. Another application of the DFT is e.g. fast integer multipli-
cation via the Schönhage-Strassen algorithm [ScSt71].

The discrete Fourier transformation of a vector x = (x0, . . . xN−1) ∈ C
N is defined

as

x̂k =
N−1∑

n=0

xj · e
−2πi nk

N k = 0, . . . , N − 1

Clearly the complexity of this 1D-DFT is in O(N logN), as for each of the N com-
ponents one sum is computed in O(logN)

Generalizing the DFT for higher dimensions is simply done by applying the DFT in
each coordinate direction. In the 2D case, the DFT reads

x̂k,l =

M−1∑

m=0

N−1∑

n=0

xm,n · e−2πi mk
M e−2πi nl

N k = 0, . . . ,M − 1; l = 0, . . . , N − 1.
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Hence, the complexity of a 2D DFT results in M times the complexity of a 1D DFT:
O(MN logN) or O(N2 logN) in the square case.

The fast Fourier transformation (FFT) is an algorithm that allows the DFT com-
putation of vectors of a power-of-2 dimension in O(N logN) on serial processors by
re-using previously computed values [CoTu65]. Parallel implementations can speed-
up the calculation - depending on the hardware functionality - by a factor up to the
number of execution units.

From the test results, presented in figure 4.16, it is clearly visible, that a parallel
FFT technique was used whenever possible. The cases, where the matrix dimensions
are powers of 2, achieve a far higher performance then the other ones. For this test,
a real-to-complex and a complex-to-real transform have been executed successively
for different matrix sizes. The time measurements were converted into GFLOPS by
assuming 2.5N logN operations for each transform. This is a common convention,
that is e.g. also used in the FFTW benchmarks4.

Figure 4.16: 2D-DFT performance test results

Currently CUFFT, the CUDA DFT library, can only outperform MKL for power-
of-2 matrix dimension larger then 1024 × 1024. The current version of CUFFT can
be seen as preliminary, it shows considerable performance fluctuations and behaves
often unexpectedly. During the creation of this thesis, a much faster 1D-FFT imple-
mentation for vectors of up to 8192 elements was presented in the CUDA developers
online forum by Vasily Volkov5, achieving up to 200 GFLOPS (approximately three
times faster then CUFFT) and another paper described DFT of arbitrary sizes with
CUDA [GLDS+08]. This raises expectations, that faster and more stable DFT im-
plementations in CUDA will be available in the medium term.

4.4 Multi-GPU programming
Up to now, only one of the two ENGTX 280 cards has been uses, the one with
the higher host connection bandwidth. The second device or other CUDA capable

4 http://www.fftw.org/speed/method.html 5 http://www.eecs.berkeley.edu/˜volkov/

http://www.fftw.org/speed/method.html
http://www.eecs.berkeley.edu/~volkov/
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devices in the system can easily be accessed with the help of the cudaSetDevice

instruction. In order to manage several devices in parallel, each device has to have
its own context, i.e. a new thread or process has to be created.

A B C

DEVICE 0

DEVICE 1

DEVICE 2

DEVICE 3

DEVICE 0

DEVICE 1

DEVICE 2

DEVICE 3

ALL DEVICES

Figure 4.17: Device blocking for parallel sgemm

In order to demonstrate the benefits of multi-GPU programming, the sgemm kernel
(cf. 4.3.1) is revisited. The easiest way to distribute the computational load onto
multiple devices is to partition the matrix row-block-wise (for column-major data
storage) and let each device compute a stripe of the result matrix, as shown in figure
4.17. This way, no synchronization is needed and the communication costs increase
only linearly with the number of devices D (D ·(1/D+1+1/D) = 2+D matrices are
communicated), while the computation costs decrease linearly as well ( 1

D
N3 for each

parallel device). As sgemm is not memory bound for sufficiently large matrices, it
is to be expected, that using several devices in parallel will speed up the calculation.

It seems natural, to create different contexts for multi-GPU computing by using
pthreads, a POSIX thread implementation that is available on every major plat-
form. The following code excerpt uses the non-Microsoft implementation.
Here, a worker function gemmThread sets the device via cudaSetDevice and calls
the respective CUBLAS function. This function can later be started as thread for a
number of devices (DEVICES) with thread specific parameters, e.g. stored in an array
of structs, parameters. The master programme finishes, after all threads have been
joined again:

pthread t threads [DEVICES ] ;

for ( int i = 0 ; i < DEVICES; i++)
pthr ead c r ea te (&threads [ i ] , NULL, gemmThread ,

(void ∗) ( parameters + i ) ) ;

for ( int i = 0 ; i < DEVICES; i++)
pthr ead jo in ( threads [ i ] , NULL) ;

Listing 4.2: Multi-GPU programming with pthreads
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As the graphics cards have a different host bandwidths and sgemm is memory bound
for small matrix dimensions, it is reasonable to distribute the matrix blocks unevenly.
The test results in figure 4.18 are hand optimized, meaning, several partition sizes
were tested and one with a good overall result was chosen for plotting. In the case
of two GPUs, the division was 57 % on device 0 and 43 % on device 1, the division
for one GPU and one CPU was 90/10 and the one for two GPUs and CPU was
56/39/5.

The timing was started synchronously for all threads using a barrier. As both

Vector dimension

P
e
rf

o
rm

a
n
c
e
 i
n
 G

F
L
O

P
S

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

1

2

4

8

16

32

64

128

256

sgemm, 1 GPU, incl. transfer

sgemm, 1 CPU, Intel MKL

sgemm, 2 GPU, incl. transfer

sgemm, 1 CPU + 1 GPU, incl. transfer

sgemm, 1 CPU + 2 GPU, incl. transfer

sgemm, 1 GPU, incl. transfer

sgemm, 1 CPU, Intel MKL

sgemm, 2 GPU, incl. transfer

sgemm, 1 CPU + 1 GPU, incl. transfer

sgemm, 1 CPU + 2 GPU, incl. transfer

Figure 4.18: sgemm performance test results using multiple devices

graphics cards started immediately with memory transfers their performance is in
some cases lower then for a single GPU, especially in the power-of-2 cases, when
the GPU achieves fairly high performances. Generally speaking, for large matrix
sizes, dual-GPU computation gains more stable performance results and achieves
speed-ups of 1.5 to 1.7 compared to a single GPU for non-power-of-2 matrices larger
then 2048 × 2048 (for these dimensions kernel is not anymore memory bound, cf.
4.3.1).
Assigning also a small part to the CPU according to a percentage rule did not result
in performance improvements. A more sophisticated rule would be needed that
assigns power-of-2 matrix blocks to the GPU and leaves the rest to the CPU. But in
order to find a decent rule, tests for non-square sgemm would have to be conducted
in the first place. Using the CPU besides two GPUs was neither beneficial, one
additional reason for this could be, that the workstation’s dual-core processor is
already busy with managing the two GPUs and has not much resources left for own
computations.

4.5 Fortran interoperability

Although Fortran’s usage in science decreased, mainly in favour of C/C++, still a lot
of Fortran programmes are in use and are further developed. In order to use the C
oriented CUDA functions in Fortran, wrapper functions have to be written in C that
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allow Fortran external calls with referenced parameters. In the case of CUBLAS,
such a wrapper file is distributed with the library, in the case of CUFFT or self-
written kernels, wrappers have to be manually developed. An example of how to
call a complex 2D forward in-place FFT from Fortran is given in listings 4.3 and 4.4.
Data allocation instructions are not shown here, they can be included as wrapped
runtime functions too or taken from CUBLAS (cublasAlloc, cublasSetMatrix, etc.).

#include <s td i n t . h>
#include <cuda runt ime api . h>
#include ” c u f f t . h”

typedef int devpt r t ; // c u r r e n t l y 32 b i t a dd r e s s space on GPU

#i f de f ined ( cp l u sp l u s )
extern ”C” {
#endif /∗ c p l u s p l u s ∗/

int s e t cuda dev i c e ( int ∗ id ) ;
int c u f f t p l a n 2d (void ∗plan , const int ∗nx , const int ∗ny , const int

∗ type ) ;
int c u f f t e x e c c 2 c ( const int ∗plan , const devpt r t ∗ idata , const

devpt r t ∗odata , const int ∗ d i r e c t i o n ) ;
int c u f f t d e s t r o y ( const int ∗plan ) ;

#i f de f ined ( cp l u sp l u s )
}
#endif /∗ c p l u s p l u s ∗/

int s e t cuda dev i c e ( int ∗ id ) {
cudaSetDevice (∗ id ) ;
return 0 ;

}

int c u f f t p l a n 2d (void ∗plan , const int ∗nx , const int ∗ny , const int

∗ type ) {
return ( int ) cu f f tP lan2d ( plan ,∗nx ,∗ny ,∗ type ) ;

}

int c u f f t e x e c c 2 c ( const int ∗plan , const devpt r t ∗ idata , const

devpt r t ∗odata , const int ∗ d i r e c t i o n ) {
void ∗ iP t r = (void ∗) ( u i n tp t r t ) (∗ i da ta ) ;
void ∗oPtr = (void ∗) ( u i n tp t r t ) (∗ odata ) ;
return ( int ) cufftExecC2C (∗ plan , iPtr , oPtr ,∗ d i r e c t i o n ) ;

}

int c u f f t d e s t r o y ( const int ∗plan ) {
return ( int ) cu f f tDes t r oy (∗ plan ) ;

}

Listing 4.3: Wrapped CUDA and CUFFT functions, e.g. wrapper.c

Note that this example was written for ifort on Linux, other system may dif-
fer in naming conventions (capitalization, name decoration, etc.), pointer sizes and
return types. Using g77 is also possible, but requires the argument -fno-second-

underscore to use the code as given here.
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external s e t cuda dev i c e , cu f f t p l an 2d , cu f f t e x e c c 2 c , c u f f t d e s t r o y
integer : : p lan
. . .
cal l s e t cuda dev i c e (1 )
cal l cu f f t p l a n 2d ( plan , dim x , dim y , 4 1 ) ! 41 = CUFFT C2C
cal l c u f f t e x e c c 2 c ( plan , data ptr , data ptr ,−1) !−1 = CUFFT FORWARD
cal l c u f f t d e s t r o y ( plan )

Listing 4.4: Fortran code excerpt, e.g. fft.f90

4.6 Summary

From the large amount of test results presented in this chapter, we can draw several
conclusions:

1. Computationally less intensive kernels, like the level 1 BLAS, are clearly mem-
ory bound and benefit only from GPU acceleration within a larger GPU pro-
gramme.

2. Random accesses slow the GPU performance tremendously as demonstrated
in the SpMV test.

3. The GPU achieves the highest speed-ups over the CPU for problem sizes that
do not fit into the CPU’s cache anymore and use all streaming processors of
the GPU efficiently.

4. The NVIDIA libraries leave a lot of room for optimisation. The results for the
FFT routine are still quite disappointing.

It had been said in the previous chapter, that performance/watt and peformance/USD
ratios are interesting criteria for comparing accelerator hardware. In this chapter
we achieved very diverse results reaching from several hundred MFLOPS to 180
GFLOPS, with double-precision versions achieving approximately half the perfor-
mance in GFLOPS on both, GPU and CPU. Also the speed-ups varied between 0
and 20, assuming the GPU is only used when it is really able to accelerate.

All in all, it is hard to give an assessment on the performance/watt and perfor-
mance/USD ratios, as the outcome is very sensitive to the actual problem. For this
reason, we postpone a final judgement on the GPU’s performance until an actual
real-world application has been tested and evaluated.



5. Discretization of the model for
particulate flows

This chapter describes the discretization process in time and space for the system
of equations derived in chapter 2, as well as numerical strategies for its solution.

The following system of equations has been derived so far for u, p, Ui, ωi and Xi:

ρf
Du

Dt
= −∇p + µ∇2u + F, ∇ · u = 0 in Ω, (5.1)

∆Mi
dUi

dt
= ∆Mig + Vic −

∫

Ω2,i

F dx in Ω2,i, (5.2)

∫

Ω2,i

∇× u dx = 2ωiVi i = 1, . . . , Np, (5.3)

dXi

dt
= Ui i = 1, . . . , Np, (5.4)

u = Ui + ωi × (x − Xi) in Ω2,i. (5.5)

5.1 Discretization in time with operator splitting

The above problem can be understood as a constrained Navier-Stokes problem. As
it is done in most current Navier-Stokes solver, time-discretization is achieved by an
operator splitting procedure. From the two main families of methods, derived from
either the Peaceman-Rachford method [PeRa55] or the methods of Marchuk [Marc75]
and Yanenko[Yane71], we choose the latter one. The reason for this being, that the
Peaceman-Rachford schemes have several drawbacks, when more then two operators
are involved[Glow03]. Here we deal with the following five sub-problems to each of
which can be associated a specific operator.
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1. Advection: The fluid velocity field is updated by only taking the transport
term in the Navier-Stokes equations into consideration.

2. Diffusion: The fluids viscosity is simulated by applying a diffusion operation
to its velocity field.

3. Projection: The incompressibility constraint is assured by making the veloc-
ity field divergence-free.

4. Rigid body motion: The rigid body motion in Ω2 is imposed on the extended
fluid velocity field.

5. Collision handling: In case of particle-particle or particle-wall collisions, the
particle positions and velocities have to be corrected.

The idea of all operator-splitting methods is to decompose the operator A in the
following initial value problem







dφ

dt
+ A(φ, t) = 0,

φ(0) = φ0,

where φ(t) ∈ Rd, ∀t > 0, and φ0 ∈ Rd, into

A =
k∑

j=1

Aj

with Ak being individually simpler then A. The Aj are later supposed to be d × d
real matrices, independent of t, which will be achieved by discretization in space.

The decomposed problem is then solved step-wise for j = 1, . . . , k for φn+j/k, depict-
ing the value of φ at time level n+1 after the jth step of the operator-splitting scheme
with k partial operators. Clearly φn+j/k is also the initial value for the (j+1)th step
of the scheme. After all k steps have been executed, the result is obviously given by
φn+k/k = φn+1:







dν

dt
+ Aj(ν, t

n+1) = 0 on(tn, tn+1)

ν(tn) := φn+(j−1)/k

φn+j/k := ν(tn+1)

The very simple and only first-order accurate Marchuk/Yanenko scheme implies one
step of the backward Euler scheme using a small enough time-discretization step δt
to solve the above problem:

Set φ0 := φ0 and for n ≥ 0, obtain φn+1 from φn via

φn+j/k − φn+(j−1)/k

δt
+ Aj(φ

n+j/k, tn+1) = 0, ∀j = 1, . . . , k
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The Marchuk/Yanenko scheme is also chosen in [GPHJ99], while [DGMN03] pro-
poses a predictor-corrector scheme that is second-order accurate for single-phase
flow, but performs significantly worse in other cases.

As we have seen in chapter 4, bandwidth is a limiting factor for GPU algorithms. The
better choice is hence the first-order Marchuk/Yanenko scheme, as it only requires
the values computed at the previous sub-step. Furthermore it is hard to estimate,
what benefit there is to gain from the formally second-order scheme.

The concrete scheme to be applied is a three-operators splitting, that decouples
advection, diffusion and incompressibility, such that the incompressibility constraint
can be treated with an L2-projection method. (For details on the derivation, see
chapter VII in [Glow03].)

5.1.1 Advection sub-step

Following the Marchuk/Yanenko splitting idea, the velocity un at time level n is
advected by solving the initial value problem

∂un+1/5

∂t
= (un · ∇)un+1/5, on Ω,

un+1/5 = 0, on Γ,

(5.6)

where un+1/5 is the “advected” velocity field at time level n + 1. It is to be noted,
that the discretization in time by a finite difference has not yet been applied.

This problem can be solved again with several methods, e.g. an upwind scheme,
the method of characteristics or the wave-like equation method. As the method of
characteristics is comparably tricky to implement and the upwind scheme is discussed
in literature almost only for piece-wise linear bases, we are going to apply the wave-
like equation method. As its description depends on the finite element discretization
in space, it will be explained later.

At this sub-step, the rigid body constraint is not taken into account yet, i.e. F = 0.
Thus equation (5.2) is not suitable for gaining a prediction for the particle velocities,
it would yield a zero guess. In order to derive an expression for Ui anyway, equation
(5.5) can be differentiated and integrated over Ω2,i(t

n+1).

It is to be noted, that variables referring to particles, such as Ui and Xi, are not
involved in the second and third step of the scheme. Hence only three values are
computed in all and the notation for these variables is chosen to be U

j/3
i , X

j/3
i , etc.
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∫

Ω2,i(tn+1)

∂u

∂t
dx =

∫

Ω2,i(tn+1)

∂ (Ui + ωi × (x −Xi))

∂t
dx

⇔

∫

Ω2,i(tn+1)

∂u

∂t
dx =

∫

Ω2,i(tn+1)

∂Ui

∂t
dx

⇒

∫

Ω2,i(tn+1)

un+1/5 − un

δt
dx =

∫

Ω2,i(tn+1)

U
n+1/3
i −Un

δt
dx

⇔

∫

Ω2,i(tn+1)

un+1/5 − un dx = Vi

(

U
n+1/3
i − Un

)

, i = 1, . . . , Np. (5.7)

An Euler backward step was used here and the fact, that Ui is constant on Ω2,i..

The prediction U
n+1/3
i will later be corrected by making use of equation (5.2).

Also in this sub-step, a prediction for the center of mass of the ith particle is com-
puted by

X
n+1/3
i = Xn

i + δtUn
i . (5.8)

This extrapolated value for Xi will be needed in a later sub-step to determine
Ω2,i(t

n+1). As Un is already present for the previous computation, it is reasonable
to do the calculation at this point.

5.1.2 Diffusion sub-step

Now, the“advected”solution is diffused by applying the next operator of the splitting
scheme:

ρf
un+2/5 − un+1/5

δt
= µ1∇

2un+2/5 in Ω,

un+2/5 = 0 on Γ.

(5.9)

This boundary value problem will later be solved by a finite element method, the
required a weak formulation will be given later together with the ones of the other
subproblems..

5.1.3 Projection sub-step

The incompressibility constraint is imposed by solving the following system:







ρf
un+3/5 − un+2/5

δt
= −∇pn+1 in Ω,

∇ · un+3/5 = 0 in Ω,

un+3/5 = 0 on Γ.

(5.10)

For this boundary value problem in un+3/5 and pn+1, a weak formulation is derived
later for the solution with a finite element method.
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5.1.4 Rigid body constraint

In [GPHJ99] and [DGMN03] the rigid body constraint is imposed iteratively in
contradiction to the idea of the splitting scheme. So far, in each step the use of an
explicit method is possible, an important precondition for achieving a high solver
speed later. As this should preferably also be possible in this step, an approximation
of the solution can be computed explicitly, according to [VeMN07].

Following the Marchuk/Yanenko splitting scheme for (5.1), (5.2) and (5.5) in the
space occupied by the particles, we get:







un+4/5 − un+3/5

δt
=

1

ρf

F in Ω, (5.11a)

U
n+2/3
i −U

n+1/3
i

δt
= g +

Vi

∆Mi
c −

1

∆Mi

∫

Ω2,i(tn+1)

F dx, (5.11b)

un+4/5 −
(

U
n+2/3
i + ωn+1

i × (x − X
n+1/3
i )

)

= 0 in Ω2,i(t
n+1). (5.11c)

Substracting (5.11a) and (5.11b) and inserting the rigid body constraint as formu-
lated in (5.11c) yields:

1

ρf

F − g −
Vi

∆Mi

c +
1

∆Mi

∫

Ω2,i(tn+1)

F dx

=
un+4/5 − un+3/5

δt
−

U
n+2/3
i −U

n+1/3
i

δt

=
U

n+1/3
i − un+3/5

δt
+

un+4/5 − U
n+2/3
i

δt

=
U

n+1/3
i − un+3/5

δt
+
ωn+1

i ×
(
x − Xn+1/3

)

δt
in Ω2,i(t

n+1), i = 1, . . . , Np.

Finally, by inserting (5.3), we get

1

ρf
F − g −

Vi

∆Mi
c +

1

∆Mi

∫

Ω2,i(tn+1)

F dx =
U

n+1/3
i − un+3/5

δt
+

1

2δtVi

(
∫

Ω2,i(tn+1)

∇× un+4/5 dx

)

×
(
x − Xn+1/3

)
in Ω2,i(t

n+1), i = 1, . . . , Np.

(5.12)

To gain an expression of the integral of F we integrate (5.12) over Ω2,i(t
n+1). As the

integral of the term in the bottom row is equal to zero it can be omitted immediately.

From the upper row we obtain:

(
1

ρf

+
Vi

∆Mi

)∫

Ω2,i(tn+1)

F dx − Vig −
V 2

i

∆Mi

c =

∫

Ω2,i(tn+1)

U
n+1/3
i − un+3/5

δt
dx.
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By using Mi = ρiVi and ∆Mi = (ρi − ρf )Vi, and rearranging in order to get the
needed expression, we conclude

ρiVi

ρf∆Mi

∫

Ω2,i(tn+1)

F dx − Vig −
V 2

i

∆Mi

c =

∫

Ω2,i(tn+1)

U
n+1/3
i − un+3/5

δt
dx ⇒

1

∆Mi

∫

Ω2,i(tn+1)

F dx =
ρf

ρi

g +
ρfc

ρi(ρi − ρf )
+
ρf

Mi

∫

Ω2,i(tn+1)

U
n+1/3
i − un+3/5

δt
dx.

(5.13)

When inserting (5.13) into (5.12), we get an expression for the global interaction
force:

1

ρf

F =

Np∑

i=1

[

g +
Vi

∆Mi

c −
1

∆Mi

∫

Ω2,i(tn+1)

F dx +
U

n+1/3
i − un+3/5

δt

+
1

2δtVi

(
∫

Ω2,i(tn+1)

∇× un+4/5 dx

)

×
(
x − Xn+1/3

)

]

1Ω2,i

=

Np∑

i=1

[(

1 −
ρf

ρi

)

g +
c

ρi

−
ρf

Mi

∫

Ω2,i(tn+1)

U
n+1/3
i − un+3/5

δt
dx +

U
n+1/3
i − un+3/5

δt

+
1

2δtVi

(
∫

Ω2,i(tn+1)

∇× un+4/5 dx

)

×
(
x −Xn+1/3

)

]

1Ω2,i
,

=

Np∑

i=1

[(

1 −
ρf

ρi

)

g +
c

ρi
+

(

1 −
ρf

ρi

)
U

n+1/3
i

δt
+
ρf

Mi

∫

Ω2,i(tn+1)

un+3/5

δt
dx

−
un+3/5

δt
+

1

2δtVi

(
∫

Ω2,i(tn+1)

∇× un+4/5 dx

)

×
(
x − Xn+1/3

)

]

1Ω2,i
,

(5.14)

where

1Ω2,i
=

{

1, in Ω2,i

0, in Ω \ Ω2,i

is the characteristic function of Ω2,i.
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Substituting (5.14) in equation (5.11a), and (5.13) in (5.11b), we finally obtain
equations for u and Ui:

un+4/5 = un+3/5 +

Np∑

i=1

[(

1 −
ρf

ρi

)

δtg +
δt

ρi

c

+

(

1 −
ρf

ρi

)

U
n+1/3
i +

ρf

Mi

∫

Ω2,i(tn+1)

un+3/5 dx − un+3/5

+
1

2Vi

(
∫

Ω2,i(tn+1)

∇× un+4/5 dx

)

×
(
x −Xn+1/3

)

]

1Ω2,i
(5.15)

U
n+2/3
i =

(

1 −
ρf

ρi

)

δtg +

(

1 −
ρf

ρi

)

U
n+1/3
i +

δt

ρi
c +

ρf

Mi

∫

Ω2,i(tn+1)

un+3/5 dx.

(5.16)

The equation for un+4/5 contains with ∇×un+4/5 a non-local term, that would lead
to a non-sparse matrix when discretized in space. There are two ways of avoiding
this problem. On the one hand, an iterative procedure can be applied, on the other
hand, [VeMN07] proposes to approximate ∇×un+4/5 with ∇×un+3/5. The advantage
would be a fully explicit algorithm for the problem, the disadvantage, that the time
step has to be chosen smaller. As we are going to solve the advection sub-problem
by an upwind scheme, we already have restrictions on the time step, such that using
this approximation here, is in line with the overall method.

As soon as the velocity fields are computed, the position of the particles are updated
according to (5.4) by

X
n+2/3
i = Xn

i + δtU
n+2/3
i , i = 1, . . . , Np. (5.17)

5.1.5 Collision handling

Although the collision force terms where included in the previous sub-step, they
have not been attributed a value yet. The model described in chapter 2 is based on
handling the collisions of one particle at a time, what is going to be done in this
step.

According to 2.3.4 for one particle after the other it is checked whether the distances
to the walls or other particles have dropped below the defined minima. In this case
equations (2.20) and (2.21) are evaluated and the forth sub-step is repeated.

This procedure is reiterated until all minimum separation distances are preserved
and the final area occupied by the particles complies with rigid body motion. In the
end we gain the final values Xn+1

i , Un+1
i and un+1

i .
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5.2 Discretization in space with finite elements

5.2.1 Triangulation of the domain

The discretization in space will be done with a finite element method, although finite
differences or finite volumes would also be possible. For this, a triangulation T of Ω
has to be found, i.e. a partition into a finite number of geometrical bodies such that

•
⋃

T∈T
T = Ω and

• T, T ′ ∈ T ∧ T 6= T ′ ⇒ T ∩ T ′ =







∅ or

a common node or

a common edge or

a common face.

From the vast possibilities of triangulations we focus only on structured ones, be-
cause of the benefit to be expected when implementing the simulation on the GPU.
Structured grids lead to predictable data accesses that achieve a much higher per-
formance then non-structured ones.

The following three types of geometrical objects are the most obvious possibilities:

• Tetrahedra: The triangulation of a cube is shown in figure 5.1, where the
dots depict the nodes for interpolation in V1 (black) and V2 (black and gray).

• Hexahedra: The use of a hexahedral grid reduces the number of elements
heavily while keeping the number of nodes stable. As now an element includes
8 or 27 nodes, the P1/2 interpolation is substituted by Q1/2 interpolation, that
is approximation by trilinear or triquadratic polynomials. A discretization
with cubes or bricks is perfectly sufficient for simple geometries and can be
mixed with tetrahedra if necessary.
In figure 5.2, the black dots depict again nodes used for Q1 interpolation and
the gray dots the additional ones for Q2.

• Prisms: A compromise between tetrahedral and hexahedral meshes would
be the use of prisms, also known as wedge and shown together with hexahe-
dra in figure 5.2. This approach is seldom taken as usually one of the two
aforementioned ones, performs sufficiently well.

The degrees of freedom, i.e. the unknown values at each node, are the same for each
triangulation. Thus, for the systems of equations to be solved, it does not matter
which triangulation is chosen. However, it does matter for the computation of the
integrals contained in the equations derived in section 5.1. These integrals will later
be computed for each element, meaning if less elements are present, the computation
time will be shorter.
On the other hand, as we are using a fixed grid that does not adopt to the particles
geometries, we might get inaccurate results when evaluating e.g equation (5.16).
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Figure 5.1: Triangulation of Ω = (0, 1)3 with a tetrahedra grid

Figure 5.2: Prism shaped and cubic grid elements with corresponding nodes.

There we integrate over the domain occupied by the particles, or in the discrete case
over the elements intersected by particles. For elements that are only partly occupied
by a particle, u is most probably discontinuous and the result of the integration can
become highly inaccurate.

Tetrahedra are thus chosen for triangulation, in order to gain more accuracy while
not enlarging the degrees of freedom.
To gain a structured grid, we divide the cube enclosing the tetrahedron in figure 5.1
into six congruent tetrahedra as shown in figure 5.3.

In the following, we are going to depict by Th the triangulation with tetrahedra as
shown in figure 5.3 with the enclosing cube having edge length h. Furthermore we
are going to number the nodes beginning by 0 and going along the x1 axis, thereafter
in x2 and finally in x3 direction.

5.2.2 Choice of elements

For reasons of stability, it is usual to use mixed finite elements for the solution of
the velocity and pressure in the Navier-Stokes equation. As the derived scheme is
only of first order accurate, a low order approximation of pressure and velocity will
be sufficient.
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Figure 5.3: Tetrahedra used for triangulation of Ω.

As tetrahedra were chosen for triangulation of Ω, P2/P1 Taylor-Hood elements are
the obvious choice. These elements satisfy the inf-sup condition, i.e. they are guar-
anteed to provide solvability for any grid, and have been widely used together with
discretization in time by operator splitting.

P2 interpolation is used for the velocity u and P1 interpolation for the pressure p.
The respective finite dimensional solution spaces used later can now be defined as
follows

V2
h =

{
νh | νh ∈ C(Ω)3 ∩H1

0(Ω)3, νh|T ∈ P2, ∀T ∈ Th

}
,

V1
h = {qh | qh ∈ C(Ω) ∩ L2,0(Ω) , qh|T ∈ P1, ∀T ∈ Th} ,

where as usual Pi is the space of the polynomials in three variables of degree ≤ i,
L2,0 is the space of square Lebesgue1 integrable functions with integral 0 and H
the Sobolev2 space with square integrable derivatives up to second order and zero
boundary conditions.

Referring to figure 5.1, the black dots depict the pressure and velocity nodes and
the gray ones additional nodes for the velocity.

5.2.3 The Galerkin finite element method

We are going to approximate u and p in the finite-dimensional spaces V2
h and V1

h by
a Galerkin3 finite element method. In order to solve the boundary value problems
formulated in (5.9) and (5.10), weak formulation have to be derived in a first step.
For this, we multiply by an arbitrary but fixed test function v and q, and integrate
over Ω.
1 Henri Léon Lebesgue (⋆ 1875, † 1941) 2 Sergei Lvovich Sobolev (⋆ 1908, † 1989)
3 Boris Grigoryevich Galerkin(⋆ 1871, † 1945)
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In a second step, we substitute the variables by piecewise linear functions ph ∈ V1
h

and piecewise quadratic functions uh ∈ V2
h by

uh =
3N∑

k=1

uk : ψk ph =
M∑

k=1

pkχk (5.18)

where {ψi}
3N
i=1 is a basis of V2

h, {χi}
M
i=1 is a basis of V1

h, with M and N being the
respective numbers of nodes in T and ” : ” denotes the elment-wise product.
Both bases are chosen such that for each node ξj : χi(ξj) = δi,j j = 1, . . . ,M and

ψd·i(ξj) = δij





δd1

δd2

δd3



 d = 1, 2, 3, i, j = 1, . . . , N

It is to be noted, that the Galerkin finite element method relies on using the same
bases {ψi} and {χi}, to span the test spaces for v and q.

In the following the subindex h is mostly omitted, as it is obvious when dealing with
a discrete description.

5.2.3.1 Weak formulations of sub-problems

Advection sub-problem

As discussed before, a wave-like equation method will be used to compute un+1/5

determined by the transport equation (5.6), which read:

∂un+1/5

∂t
= (un · ∇)un+1/5.

It is first to notice, that the above equations can be solved independently for the
single components u = (ux1

, ux2
, ux3

):

∂u
n+1/5
xd

∂t
= (un · ∇) un+1/5

xd
, d = 1, 2, 3. (5.19)

The wave-like equation method as explained e.g. in [Glow03], uses the fact that a
solution to the transport problem is formally also a solution to the wave equation

∂2φ

∂t2
= a2∇2φ.

In order to produce this equation structure, we differentiate (5.19) by t and substitute
the gradient in the right-hand side by inserting (5.19):

∂2u
n+1/5
xd

∂t2

(

= (un · ∇)
∂u

n+1/5
xd

∂t

)

= un · ∇
(
un · ∇un+1/5

xd

)
, d = 1, 2, 3.
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Note that besides the misleading notation, u is still continuous on (tn, tn+1) here,
hence the above equation as to be fulfilled for all t ∈ (tn, tn+1). Besides the obvious

initial condition u
n+1/5
xd (tn) = un

xd
, we now also have to fulfill

∂u
n+1/5
xd

∂t
(tn) = un ·∇un

xd

because of the differentiation.

In [Glow03] it is proven that this problem has a unique solution, that we are going
to compute approximated in space with finite elements and in time with finite dif-
ferences. The needed weak formulation reads for t ∈ (tn, tn+1):

Find u
n+1/5
xd ∈ H1

0(Ω), such that ∀v ∈ H1
0(Ω):

∫

Ω

∂2u
n+1/5
xd

∂t2
v − (un · ∇un+1/5

xd
)(un · ∇v) dx = 0,

un+1/5
xd

(tn) = un
xd
,

∂u
n+1/5
xd

∂t
(tn) = un · ∇un

xd
.

For the time discretization, we follow [Glow03] further and set δt′ := δt
Q

, with Q being

a positive integer, and u
n+0/(5Q)
xd := un

xd
. We then compute u

n+1/(5Q)
xd and u

n−1/(5Q)
xd

from

∫

Ω

u
n+1/(5Q)
xd − u

n−1/(5Q)
xd

2δt′
v − un · ∇un

xd
v dx = 0,

∫

Ω

u
n+1/(5Q)
xd − 2u

n+0/(5Q)
xd + u

n−1/(5Q)
xd

(δt′)2
v − (un · ∇un

xd
)(un · ∇v) dx = 0.

In order to facilitate computation we can manually solve for u
n−1/(5Q)
xd and remain:

∫

Ω

un+1/(5Q)
xd

v dx =

∫

Ω

un
xd
v + δt′un · ∇un

xd
v +

(δt′)2

2
(un · ∇un

xd
)(un · ∇v) dx.

(5.20)

For the other q = 1, . . . , Q− 1 we solve ∀v ∈ H1
0(Ω):

∫

Ω

u
n+(q+1)/(5Q)
xd

− 2u
n+q/(5Q)
xd

+ u
n+(q−1)/(5Q)
xd

(δt′)2
v− (un ·∇un+q/(5Q)

xd
)(un ·∇v) dx = 0,

or sorted for knowns and unknowns:

∫

Ω

un+(q+1)/(5Q)
xd

v dx =
∫

Ω

(2un+q/(5Q)
xd

− un+(q−1)/(5Q)
xd

)v + (δt′)2(un · ∇un+q/(5Q)
xd

)(un · ∇v) dx. (5.21)
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The fully discrete scheme based on (5.20) and (5.21) reads then:

Find
(

u
n+1/(5Q)
xd,i

)

d=1,...,3, i=1,...,N
, such that

∫

Ω

(
N∑

i=1

u
n+1/(5Q)
xd,i ψi

)

ψj dx

=

∫

Ω

(
N∑

i=1

un
xd,iψi

)

ψj + δt′

(
N∑

i=1

un
xd,i

(
3∑

e=1

N∑

k=1

un
xe,kψk

∂ψi

∂xe

))

ψj

+
(δt′)2

2

(
N∑

i=1

un
xd,i

(
3∑

e=1

N∑

k=1

un
xe,kψk

∂ψi

∂xe

))(
3∑

f=1

N∑

l=1

un
xf ,lψl

∂ψj

∂xf

)

dx,

for j = 1, . . . , N, (5.22)

and
(

u
n+(q+1)/(5Q)
xd,i

)

d=1,...,3, i=1,...,N, q=1,...,Q−1
, such that

∫

Ω

(
N∑

i=1

(

u
n+(q+1)/(5Q)
xd,i

)

ψi

)

ψj dx

=

∫

Ω

(
N∑

i=1

(

2u
n+q/(5Q)
xd,i − u

n+(q−1)/(5Q)
xd,i

)

ψi

)

ψj

+ (δt′)2

(
N∑

i=1

u
n+q/(5Q)
xd,i

(
3∑

e=1

N∑

k=1

un
xe,kψk

∂ψi

∂xe

))(
3∑

f=1

N∑

l=1

un
xf ,lψk

∂ψj

∂xf

)

dx,

for j = 1, . . . , N. (5.23)

Diffusion sub-problem

By applying the described procedure, we transform (5.9) into the weak problem:
Find un+2/5 ∈ H1

0(Ω)3 such that ∀v ∈ H1
0(Ω)3

ρf

δt

∫

Ω

(
un+2/5 − un+1/5

)
v dx = −µ1

∫

Ω

∇un+2/5∇v dx.

Sorting the unknowns to the left and shifting the divergence in the right side to v,
we obtain

∫

Ω

ρf

δt
un+2/5v + µ∇un+2/5∇v dx =

∫

Ω

ρf

δt
un+1/5 dx.

This equation is discretized by inserting (5.18):

Find
(

u
n+2/5
i

)

i=1,...,3N
(and thereby u

n+2/5
h ∈ V2

h), such that

∫

Ω

ρf

δt

(
3N∑

i=1

u
n+2/5
i : ψi

)

ψj + µ∇

(
3N∑

i=1

u
n+2/5
i : ψi

)

∇ψj dx =

∫

Ω

ρf

δt

(
3N∑

i=1

u
n+1/5
i ψi

)

dx for j = 1, . . . , 3N,
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what can be rearranged to get

3N∑

i=1

(
ρf

δt
u

n+2/5
i

∫

Ω

ψi : ψj dx + µu
n+2/5
i

∫

Ω

∇ψi : ∇ψj dx

)

=

3N∑

i=1

ρf

δt
u

n+1/5
i :

∫

Ω

ψi dx for j = 1, . . . , 3N. (5.24)

Currently, the integrals in this equations are to be understood component-wise,
we will later treat the the three space-dimensions independently as done for the
advection.

Projection sub-problem

The derivation of the weak problem is again straight forward:

Find pn+1 ∈ H1(Ω) such that

∫

Ω

∇pn+1∇q dx =
ρf

δt

∫

Ω

un+2/5∇q dx ∀q ∈ H1(Ω),

and un+3/5 ∈ H1
0(Ω)3 such that

ρf

δt

∫

Ω

(
un+3/5 − un+2/5

)
v dx =

∫

Ω

pn+1 (∇ · v) dx ∀v ∈ H1
0(Ω)3.

This is discretized into

Find
(
pn+1

i

)

i=1,...,M
, such that

M∑

i=1

pn+1
i

∫

Ω

∇χi∇χj dx =

3N∑

i=1

ρf

δt
u

n+2/5
i

∫

Ω

ψi : ∇χj dx for j = 1, . . . ,M, (5.25)

and
(

u
n+3/5
i

)

i=1,...,3N
, such that

3N∑

i=1

ρf

δt

(

u
n+3/5
i − u

n+2/5
i

)∫

Ω

ψi : ψj dx =

M∑

i=1

pn+1
i

∫

Ω

χi

(
∇ ·ψj

)
dx

for j = 1, . . . , 3N. (5.26)

Rigid body motion sub-problem

A discretization of equations (5.15) and (5.16) is needed here. As we are only dealing
with constant quantities, the correction can be done node wise, as soon as the integral
values have been computed. Namely, these integrals were

∫

Ω2,i(tn+1)

un+3/5 dx and

∫

Ω2,i(tn+1)

∇× un+3/5 dx.
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Let Ni be the number of velocity nodes in Ω2,i(t
n+1), then the discrete versions read:

3Ni∑

j=0

u
n+3/5
j :

∫

Ω2,i(tn+1)

ψj dx and (5.27)

3Ni∑

j=0

∫

Ω2,i(tn+1)

∇× (u
n+3/5
j : ψj) dx

=

3Ni∑

j=0












ux3

∫

Ω2,i(tn+1)

∂[ψj ]x3

∂x2

dx − ux2

∫

Ω2,i(tn+1)

∂[ψj ]x2

∂x3

dx

ux1

∫

Ω2,i(tn+1)

∂[ψj ]x1

∂x3
dx − ux3

∫

Ω2,i(tn+1)

∂[ψj ]x3

∂x1
dx

ux2

∫

Ω2,i(tn+1)

∂[ψj ]x2

∂x1
dx − ux1

∫

Ω2,i(tn+1)

∂[ψj ]x1

∂x2
dx












(5.28)

5.2.3.2 Element matrices

For the assembly of the matrices occurring in the weak formulations above, local
element matrices are computed that are later assembled into a global matrix. A
general computation scheme for any geometry is derived by affine mapping from
a reference tetrahedron T̂ , as illustrated in figure 5.4. By computing the element
contributions and mapping back to the actual element, we can easily assemble the
global matrices.

Figure 5.4: Mapping from the reference tetrahedron to an arbitrary P1 element.

Pressure stiffness matrix

We are going to denote the stiffness matrix of the pressure by B, defined as

B := (bij) :=

∫

Ω

∇χi∇χj dx.
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As mentioned before, we are going to assemble the whole matrix by adding up the
contributions of all elements, which constitute a complete partition of Ω:

∫

Ω

∇χi∇χj dx =
∑

T∈Th

∫

T

∇χi∇χj dx. (5.29)

In our case of P1-tetrahedra, we only have to consider the four element basis func-
tionsζT,i, that are non-zero on the respective element’s nodes. These can be under-
stood as the restrictions of the global basis functions χk on the element T and hence
they form a basis set, such that within the element, the solution takes the form

p|T =
4∑

i=1

pT,iζT,i.

Localizing (5.29), we obtain a set of 4 × 4 matrices BT , such that

BT = (bT,ij) =

∫

T

∇ζT,i∇ζT,j dx.

These BT are the element stiffness matrices associated to the T ∈ Th, we are looking
for.

We can derive general equations for ∇ζi by mapping from the reference tetrahedron,
which is defined by

T̂ = {(x1, x3, x3) : 0 ≤ x1, x2, x3 ≤ 1, x1 + x2 + x3 ≤ 1} . (5.30)

We now consider the mapping from the reference tetrahedron to the actual element,
as illustrated in figure 5.4. From this we get the local-global mapping defined for all
points Pi(x1, x2, x3) = (xi,1, xi,2, xi,3) ∈ T by

x1(ξ) = x0,1τ0(ξ) + x1,1τ1(ξ) + x2,1τ2(ξ) + x3,1τ3(ξ),

x2(ξ) = x0,2τ0(ξ) + x1,2τ1(ξ) + x2,2τ2(ξ) + x3,2τ3(ξ), (5.31)

x3(ξ) = x0,3τ0(ξ) + x1,3τ1(ξ) + x2,3τ2(ξ) + x3,3τ3(ξ),

where

τ0(ξ1, ξ2, ξ3) = 1 − ξ1 − ξ2 − ξ3,
τ1(ξ1, ξ2, ξ3) = ξ1,
τ2(ξ1, ξ2, ξ3) = ξ2,
τ3(ξ1, ξ2, ξ3) = ξ3.

(5.32)

are the shape functions on the reference element, that are easily computed from the
rule that all basis functions χi are linear, equal to 1 on node i and zero on all other
nodes.
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Clearly the mapping is differentiable, and we obtain for any differentiable function
ϕ(ξ1, ξ2, ξ3) a transformation of derivatives by










∂ϕ

∂ξ1
∂ϕ

∂ξ2
∂ϕ

∂ξ3










=










∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ2
∂x1

∂ξ3

∂x2

∂ξ3

∂x3

∂ξ3










︸ ︷︷ ︸

=:JT










∂ϕ

∂x1
∂ϕ

∂x2
∂ϕ

∂x3










. (5.33)

The Jacobian matrix J occurring here can be calculated by substituting (5.32) into
(5.31) and differentiating:

J =
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
=





x1,1 − x0,1 x2,1 − x0,1 x3,1 − x0,1

x1,2 − x0,2 x2,2 − x0,2 x3,2 − x0,2

x1,3 − x0,3 x2,3 − x0,3 x3,3 − x0,3



 . (5.34)

In this simple case, J is constant and we can explicitly compute the determinant by

| detJ| = | detJT | =

∣
∣
∣
∣
∣
∣

det





x1,1 − x0,1 x1,2 − x0,2 x1,3 − x0,3

x2,1 − x0,1 x2,2 − x0,2 x2,3 − x0,3

x3,1 − x0,1 x3,2 − x0,2 x3,3 − x0,3





∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

det







1 x0,1 x0,2 x0,3

1 x1,1 x1,2 x1,3

1 x2,1 x2,2 x2,3

1 x3,1 x3,2 x3,3







∣
∣
∣
∣
∣
∣
∣
∣

= 6VT ,

where VT is the volume of the master tetrahedron T , in our case
h3

6
.

In order to get the inverse global-local mapping, we can simply invert JT , as the
determinant is non-zero for any point (ξ1, ξ2, ξ3):

J−T =





x1,1 − x0,1 x1,2 − x0,2 x1,3 − x0,3

x2,1 − x0,1 x2,2 − x0,2 x2,3 − x0,3

x3,1 − x0,1 x3,2 − x0,2 x3,3 − x0,3





−1

=:





a b c
d e f
g h i





−1

=
1

detJ





−fh+ ei +ch− bi −ce + bf
+fg − di −cg + ai −af + cd
−eg + dh +bg − ah −bd + ae



 =:
1

detJ





b∗11 b∗12 b∗13
b∗21 b∗22 b∗23
b∗31 b∗32 b∗33



 .
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Writing this inverse mapping similar to (5.33), we have










∂ϕ

∂x1
∂ϕ

∂x2
∂ϕ

∂x3










=
1

detJ





b∗11 b∗12 b∗13
b∗21 b∗22 b∗23
b∗31 b∗32 b∗33





︸ ︷︷ ︸

=:
[
b∗1 b∗2 b∗3

]

︸ ︷︷ ︸
=:B∗










∂ϕ

∂ξ1
∂ϕ

∂ξ2
∂ϕ

∂ξ3










. (5.35)

We can proceed by giving an expression for bT,ij :

bT,ij =

∫

T

∂ζT,i

∂x1

∂ζT,j

∂x1
+
∂ζT,i

∂x2

∂ζT,j

∂x2
+
∂ζT,i

∂x3

∂ζT,3

∂x1
dx

=

∫

T̂

{
∂τi
∂x1

∂τj
∂x1

+
∂τi
∂x2

∂τj
∂x2

+
∂τi
∂x3

∂τj
∂x1

}

| detJ| dξ

=
| detJ|

(detJ)2

∫

T̂

(

b∗11
∂τi
∂ξ1

+ b∗12
∂τi
∂ξ2

+ b∗13
∂τi
∂ξ3

)(

b∗11
∂τj
∂ξ1

+ b∗12
∂τj
∂ξ2

+ b∗13
∂τj
∂ξ3

)

+

(

b∗21
∂τi
∂ξ1

+ b∗22
∂τi
∂ξ2

+ b∗23
∂τi
∂ξ3

)(

b∗21
∂τj
∂ξ1

+ b∗22
∂τj
∂ξ2

+ b∗23
∂τj
∂ξ3

)

+

(

b∗31
∂τi
∂ξ1

+ b∗32
∂τi
∂ξ2

+ b∗33
∂τi
∂ξ3

)(

b∗31
∂τj
∂ξ1

+ b∗32
∂τj
∂ξ2

+ b∗33
∂τj
∂ξ3

)

dξ.

Because of the simple nature of the τi we can explicitly compute the derivatives as

∂τ0
∂ξ

=





−1
−1
−1



 ,
∂τ1
∂ξ

=





1
0
0



 ,
∂τ2
∂ξ

=





0
1
0



 ,
∂τ3
∂ξ

=





0
0
1



 .

As also the derivatives of the shape functions on the master element ζT,i are constant,
we have in (5.35), that also B∗ is constant and integration simplifies to multiply-
ing with the volume of the reference tetrahedron. The volume is calculated by
∫ 1

0

∫ 1−ξ1

0

∫ 1−ξ1−ξ2

0

dξ3 dξ2 dξ1 =
1

6
and inserting gives the following result:

bT,ij =
1

6h3

[(

b∗11
∂τi
∂ξ1

+ b∗12
∂τi
∂ξ2

+ b∗13
∂τi
∂ξ3

)(

b∗11
∂τj
∂ξ1

+ b∗12
∂τj
∂ξ2

+ b∗13
∂τj
∂ξ3

)

+

(

b∗21
∂τi
∂ξ1

+ b∗22
∂τi
∂ξ2

+ b∗23
∂τi
∂ξ3

)(

b∗21
∂τj
∂ξ1

+ b∗22
∂τj
∂ξ2

+ b∗23
∂τj
∂ξ3

)

+

(

b∗31
∂τi
∂ξ1

+ b∗32
∂τi
∂ξ2

+ b∗33
∂τi
∂ξ3

)(

b∗31
∂τj
∂ξ1

+ b∗32
∂τj
∂ξ2

+ b∗33
∂τj
∂ξ3

)]

.
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The actual computation for the six types of tetrahedra used (cf. figure 5.3) is quickly
done with a computer algebra system, the resulting six element stiffness matrices
are presented in appendix A.1. As elements of type IV ,V and VI are only flipped
versions of elements of types I, II and III, B∗ is the same for a pair of elements, only
the sign of the determinant is different. As we transform both gradients, we obtain
the squared determinant as factor and the element matrices of I and IV, II and V,
and III and VI are identical.

Velocity stiffness matrix

The stiffness matrix of the velocity is going to be denoted by A, with

A := (aij) =

∫

Ω

∇ψi : ∇ψj dx.

This can be simplified by noting that we used the same scalar spaces of finite el-
ements for each of the three components, we can instead calculate three identical
N × N matrices A′ by using {ψi}

3N
i=1 = {(ψ1, 0, 0)T , . . . , (ψN , 0, 0)T , (0, ψ1, 0)T , . . . ,

(0, ψN , 0)T , (0, 0, ψ1)
T , . . . , (0, 0, ψN)T} and computing

A(ui)i=1,...,3N =





A′ 0 0
0 A′ 0
0 0 A′









(ui)i=1,...,N

(ui)i=N+1,...,2N

(ui)i=2N+1,...,3N



 ,

with

A′ =

∫

Ω

∇ψi · ∇ψj dx.

Again, we restrict the basis functions ψk on an element T and call these 10 local
basis functions ςT,i = ψk|T :

(uh)k|T =
10∑

i=1

ui · ςT,i.

Again we assemble the global stiffness matrix by computing the element stiffness
matrices A′

T associated to T by

A′

T = (a′T,ij) =

∫

T

∇ςT,i∇ςT,j dx.

As we are still dealing with tetrahedra, the mappings we derived for the pressure in
(5.31) and (5.33) still hold. We only have to derive new shape functions ηi on the P2

reference element in order to get expressions for the ςT,i. This can be done manually
for the pressure or by using the fact, that the quadratic functions we are looking for
are actually Lagrange interpolants and can be expressed with the help of the linear
functions.



84 5. Discretization of the model for particulate flows

Either way, we derive the following 10 shape functions on the reference tetrahedron,
where the numbering indicates, on which node a shape function equals one:

η1 = 2(ξ2
1 + ξ2

2 + ξ2
3) − 3(ξ1 + ξ2 + ξ3) + 4(ξ1ξ2 + ξ1ξ3 + ξ2ξ3) + 1,

η3 = 2ξ2
1 − ξ1, η2 = 4(−ξ2

1 + ξ1 − ξ1ξ2 − ξ1ξ3), η5 = 4ξ1ξ2,
η6 = 2ξ2

2 − ξ2, η4 = 4(−ξ2
2 + ξ2 − ξ2ξ1 − ξ2ξ3), η8 = 4ξ1ξ2,

η10 = 2ξ2
3 − ξ3, η7 = 4(−ξ2

3 + ξ3 − ξ3ξ1 − ξ3ξ2), η9 = 4ξ1ξ2.

Here, η0 is the shape function, that is one in the origin, η1, η2, η3 are equal to one on
the corner nodes, η4, η5, η6 are mid-edge shape functions on the edges parallel to one
coordinate axes and finally, η7, η8, η9 are the remaining other three mid-edge shape
functions.

Similarly to the linear case, we can compute the entries of the element stiffness
matrix by

a′T,ij =
1

| detJ|

∫

T̂

(

b∗11
∂ηi

∂ξ1
+ b∗12

∂ηi

∂ξ2
+ b∗13

∂ηi

∂ξ3

)(

b∗11
∂ηj

∂ξ1
+ b∗12

∂ηj

∂ξ2
+ b∗13

∂ηj

∂ξ3

)

+

(

b∗21
∂ηi

∂ξ1
+ b∗22

∂ηi

∂ξ2
+ b∗23

∂ηi

∂ξ3

)(

b∗21
∂ηj

∂ξ1
+ b∗22

∂ηj

∂ξ2
+ b∗23

∂ηj

∂ξ3

)

+

(

b∗31
∂ηi

∂ξ1
+ b∗32

∂ηi

∂ξ2
+ b∗33

∂ηi

∂ξ3

)(

b∗31
∂ηj

∂ξ1
+ b∗32

∂ηj

∂ξ2
+ b∗33

∂ηj

∂ξ3

)

dξ.

Now we do not have constant derivatives anymore, such that we have to compute
the integrals on the reference tetrahedron. From (5.30), we have that the integral
for an integrable function ϕ on T̂ is computed by

∫

T̂

ϕ dξ =

∫ 1

0

∫ 1−ξ1

0

∫ 1−ξ1−ξ2

0

ϕ dξ3 dξ2 dξ1.

Using a computer algebra system again to evaluate the above expressions for the
matrix entries, we get six 10×10 velocity elment stiffness matrices, that are printed
as well in appendix A.1. Again we obtain pairs of elements with identical element
matrices.

Velocity mass matrix

For the velocity mass matrix,

Mij =

∫

Ω

ψi : ψj dx,

we perform again a component splitting and compute

M =





M′ 0 0
0 M′ 0
0 0 M′



 , with M′ =

∫

Ω

ψi · ψj dx.
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Also as before, we perform the computation via element matrices, that we derive by
mapping to a reference tetrahedron. Using (5.34), we can re-write (5.32) to define
the local-global mapping F by

F (ξ) = JTξ + x0,

where the inverse mapping is clearly given by

F−1(x) = J−T (x − x0).

This can now applied to compute the element mass matrix entries on the reference
tetrahedron:

∫

T

ψi · ψj dx =

∫

T

(
F−1(ψi)

)
·
(
F−1(ψj)

)
dx

=

∫

T

ηi · ηj dx

= | detJ|

∫

T̂

ηi · ηj dξ

= h3

∫

T̂

ηi · ηj dξ

The computed result is again printed in appendix A.1.

Velocity pressure-gradient matrix

Cij =

∫

Ω

ψi∇χj dx, i = 1, . . . , 3N, j = 1, . . . ,M,

As we have already dealt with the two factors occurring here, i.e. the basis functions
of the velocity and the gradient of the pressure basis functions, the derivation of
element matrices for this matrix is easy.

We consider again an element T ∈ Th and the restrictions of ψ and χ on it. We also
decompose ψ again and compute

C =





C′
1

C′
2

C′
3



 , with (C′

d)ij =

∫

Ω

ψi
∂χj

∂xd

dx =
∂χj

∂xd

∫

Ω

ψi dx,
i = 1, . . . , N,
j = 1, . . . ,M.

We then have

C′

d,T =
∂ζT,j

∂xd

∫

T

ςT,i dx =
| detJ|

detJ

(

b∗d1

∂τj
∂ξ1

+ b∗d2

∂τj
∂ξ2

+ b∗d3

∂τj
∂ξ3

)∫

T̂

ηi dξ.

As we now have the determinant only once as factor, we obtain unique element
matrices for each of the occurring tetrahedra. The resulting 6 · d = 18 element
matrices can be found in appendix A.1.



86 5. Discretization of the model for particulate flows

Velocity-divergence pressure matrix

The last matrix to be computed is the velocity-divergence pressure matrix D defined
by

Dij =

∫

Ω

χi

(
∇ ·ψj

)
dx

=

∫

Ω

χi

(
∂(ψj)1

∂x1

+
∂(ψj)2

∂x2

+
∂(ψj)3

∂x3

)

dx, i = 1, . . . ,M, j = 1, . . . , 3N,

that we divide by components as

D =
[

D′
1 D′

2 D′
3

]
, with D′

d =

∫

Ω

χi
∂ψj

∂xd
dx i = 1, . . . ,M, j = 1, . . . , N.

Here we used, that we consider only basis functions ψj that are non-zero only in one
component at a time.
The respective element matrix is found as usual via mapping from the reference
tetrahedron:

D′

d,T =

∫

T

ζT,i
∂ςT,j

∂xd
dx

=
| detJ|

det J

∫

T̂

τi

(

b∗d1

∂ηj

∂ξ1
+ b∗d2

∂ηj

∂ξ2
+ b∗d3

∂ηj

∂ξ3

)

dξ.

This results again in 18 element matrices that are as well printed in appendix A.1.

Advection component matrices

Finally, we deal with the vectors in the right-hand sides of (5.22) and (5.23):

N∑

i=1

un
xd,i

(
3∑

e=1

N∑

k=1

un
xe,k

∫

Ω

ψk
∂ψi

∂xe
ψj dx

)

, j = 1, . . . , N, and,

N∑

i=1

u
n+q/(5Q)
xd,i

(
3∑

e,f=1

N∑

k,l=1

un
xe,ku

n
xf ,l

∫

Ω

ψkψl
∂ψi

∂xe

∂ψj

∂xf
dx

)

, j = 1, . . . , N,

where we have q = 0 in the second equation for (5.22).

Here it is not reasonable to pre-compile matrix-like structures for the element types
and multiply with all the coefficient vectors directly before solving the equations
systems. In this case we would be left with three- or four-dimensional objects that
will occupy enormous memory resources when assembled later, albeit being sparse
and identical for all d. As we only deal with known coefficients in the right-hand
sides, we can already solve the sums and keep only vectors over j. For the first
equation that is only needed once, this is possible reasonable solution. For the
second, we would have to recompile the element vectors for each sub-time-step. In
this case, it is more appropriate to keep the sum over i and hence a matrix only
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depending on the values of un
xd

from the previous major time step. Also for the
other matrix, we do not gain performance by pre-computing a vector instead of a
matrix, we can as well do a matrix-vector multiplication during run-time.

On this basis, we define the two component matrices R′ =
∑

T∈Th
R′

T and S′ =
∑

T∈Th
S′

T , with the element matrices defined as

R′

T =

3∑

e=1

N∑

k=1

un
xe,k

| detJ|

det J

∫

T̂

ηk

(

b∗e1
∂ηi

∂ξ1
+ b∗e2

∂ηi

∂ξ2
+ b∗e3

∂ηi

∂ξ3

)

ηj dξ, and

S′

T =
3∑

e,f=1

N∑

k,l=1

[

un
xe,ku

n
xf ,l

1

| detJ|

·

∫

T̂

ηkηl

(

b∗e1
∂ηi

∂ξ1
+ b∗e2

∂ηi

∂ξ2
+ b∗e3

∂ηi

∂ξ3

)(

b∗f1

∂ηj

∂ξ1
+ b∗f2

∂ηj

∂ξ2
+ b∗f3

∂ηj

∂ξ3

)

dξ

]

.

Vectors

As well as the matrices, the load vector L is computed by adding up element con-
tributions:

L′

i =

∫

Ω

ψi dx =
∑

T∈Th

∫

T

ψi dx =
∑

T∈Th

| detJ|

∫

T̂

ηi dξ, i = 1, . . . , 3N.

The same applies to the component gradient vectors needed Gd, that is needed in
(5.16):

(Gd)i =

∫

Ω

∂ψi

∂xd
dx =

∑

T∈Th

∫

T

∂ψi

∂xd
dx

=
∑

T∈Th

| detJ|

detJ

∫

T̂

b∗d1

∂ηi

∂ξ1
+ b∗d2

∂ηi

∂ξ2
+ b∗d3

∂ηi

∂ξ3
dξ, i = 1, . . . , N.

5.2.4 Assembly of the Galerkin systems

For the generation of global matrices from element matrices we need some infor-
mation of the triangulation. A matrix entry eij is only non-zero if there exists at
least one element that includes point Pi and Pj. (As every point is at a corner or
on an edge of an element, if there exists one such element, then there exists at least
another).

The summing up of all contributions is done step-wise for each matrix entry of the
final matrix E:

1. Identify the octants, i.e. the cubes enclosing six tetrahedra each, that Pi and
Pj are part of.

2. Identify the k tetrahedra and their type tk = I, . . . , V I that includes Pi and
Pj and the local point numbers i′ and j′ of the points.
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3. Sum up E′
tk

(i′, j′).

We start out with the first task and use the naming conventions as shown in figure
5.5 for the pressure nodes.

Q 1

Q 2Q 3

Q 4

Q 5Q 6Q 7 Q 8

x1

x2

x3

P1

P2

P4

P3

P5

P6

P7

P8

Figure 5.5: Local node and octants naming conventions.

Each point is part of eight quadrants and is assigned a local number therein, that
is needed for picking the respective contribution in the elment matrices. Likewise, a
pair of neighboring points is included in four quadrants, those that share the edge
between these two points.

Secondly, for each quadrant with its nodes numbered locally from 1 to 8, we have
for the six elements contained in it a mapping of node numbers with:

P I II III IV V VI
1 1 1
2 2 1
3 2 1
4 3 2 1 3 2 1
5 4 3 2 4 3 2
6 4 3
7 4 3
8 4 4

In order to proceed with the third step, we only have to check for each element type
tk, if there exists a mapping for both Pi → Pi′ and Pj → Pj′.

Now E′
tk

(i′, j′) can be added to eij .

As an example, figure 5.6 shows the resulting stiffness matrices for a triangulation
of the unit cube with h = 0.25, i.e. the unit cube is divided in 4 × 4 × 4 cubes,
resulting in 384 elements consisting of 125 pressure nodes and 729 velocity nodes. By
construction we get sparse symmetric matrices with block structures. The structure
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Figure 5.6: Structure plots of the pressure stiffness matrix B (left) and the velocity
component stiffness matrix A′ (right) for a triangulation of the unit cube with h =
0.25.

plots of figure 5.6 show a black dot for every matrix entry that is non-zero. All other
structure plots can be found in appendix A.2.

The matrices/vectors occurring in the advection sub-problem depend on results of
the previous time step, such that we cannot pre-compile them. Compilation at run-
time is done the same way, via summing up of element contributions. Here we have
two main possibilities, to iterate node- or element-wise. Element-wise calculation
would mean, to evaluate the element matrix and distribute the results over the
respective nodes. On the GPU this would make the handling of possible write
conflicts necessary, when different processors evaluated neighboring elements and
try to set the a value to the same node. Node-wise calculation avoids this problem
but evaluates elements several times, as for each nodes all the octants shown in figure
5.5 have to be considered.

With all matrices compiled as described, we can rewrite the problems as

Advection: Find

(

u
n+ q+1

5Q

i

)

i=1,...,3N

, for q = 0, . . . , Q− 1, such that







Mbc ·

(

u
n+ 1

5Q

i

)

bc

= Mbc · (u
n
i )bc

+

(

δt′R +
(δt′)2

2
S

)

bc

· (un
i )bc for q = 0 (5.36a)

Mbc ·

(

u
n+ q+1

5Q

i

)

bc

= Mbc ·

(

2u
n+ q

5Q

i − u
n+ q−1

5Q

i

)

bc

+ (δt′)
2
Sbc ·

(

u
n+ q

5Q

i

)

bc
for q > 0 (5.36b)

Diffusion: Find
(

u
n+2/5
i

)

i=1,...,3N
, such that

(ρf

δt
M + µA

)

bc
·
(

u
n+2/5
i

)

bc
=
(ρf

δt
L
)

bc
:
(

u
n+1/5
i

)

bc
(5.37)
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Projection: Find
(
pn+1

i

)

i=1,...,M
and

(

u
n+3/5
i

)

i=1,...,3N
, such that







B ·
(
pn+1

i

)
=
ρf

δt
CT
(

u
n+2/5
i

)

and (5.38a)
(ρf

δt
M
)

bc
·
(

u
n+3/5
i

)

bc
=
(ρf

δt
M
(

u
n+2/5
i

)

+ DT
(
pn+1

i

))

bc
(5.38b)

The subscript bc denotes, that we still have to enforce the homogeneous Dirichlet
boundary conditions for the fluid velocity. Fixing the velocity values on the boundary
reduces the degrees of freedom by the number of these nodes. Instead of changing the
matrix and vector entires, we can completely remove the ith row and/or ith column
if a node Pi resides on the boundary and fill the solution with zeros afterwards. This
way, the dimension of the equation system is reduced leading to faster computation.

Fulfilling the condition of the pressure integral to be 0 on Ω, can be achieved by at
least two strategies. One is, to enlarge B with an additional row of 1’s and the right
side with a zero entry. This would be contradicting the idea, to keep the systems
as sparse as possible. Thus the second approach is more favorable, which takes
advantage of the fact, that the solution of the equation system will be computed in
an iterative fashion. It is hence possible to correct the intermediate solutions for p
after each step (or possibly several steps), to have integral zero, without disturbing
the convergence of the overall scheme.

5.3 Summary

In this chapter, we motivated the choice of a operator splitting technique to divide
the particulate flow problem into sub-problems that are individually easier to han-
dle. The Navier-Stokes equations for the fluid flow problem were approached with
wave-like/projection method and mixed P2/P1 finite elements in space and finite
differences in time. The scheme is first-order accurate in time, as well as for the
pressure in space. For the velocity, it is second-order accurate in space.

For each time step we execute the following algorithm:

1a Advection: Assemble the matrices R and S and solve the linear equations sys-
tems (5.36). As the individual velocity components in space are independent,
we can instead solve three smaller problems (in parallel), using the component
matrices M′, R′ and S′

1b Prediction of particle velocities: By using the advected fluid velocity,
we compute a first approximation of the particles’ velocities by (5.7). The
integrals occurring therein are evaluated similar to (5.27).

1c Particle position update: With the velocities predicted, also an estimation
of the particles’ positions can be given via (5.8).

2 Diffusion: As stated just above, we solve the linear equation system (5.37) in
the diffusion sub-problem. As the velocity components are independent again,
we use M′, A′ and vector L′.
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3 Projection: In this step, the two equation systems (5.38) have to be solved.
As before, we can do this component-wise, such that the computation can
be done in parallel. Before solving the second equations system, the pressure
solution has to be corrected, such that the pressure integral over Ω equals zero.

4a Rigid body motion: Here, we have to identify the elements, occupied by
the particles and compute the integrals (5.27) and (5.28) on these domains.
Thereafter, we correct the velocities of both, the fluid and the particle via
(5.15) and (5.16). For this first step, we leave out, the particle-wall collision
terms.

4b Particle position update: Based on the newly computed particle velocities,
we correct the particle positions, similar to (5.8).

5 Collisions: With the particle positions known, potential collisions are han-
dled, i.e. forces occurring at particle-wall collisions are computed according to
(2.21), as well as displacements resulting from particle-particle collisions, cf.
(2.20). In the event of collisions, the updated values are taken into account in
another run of the step 4a. This procedure is repeated until no more collisions
appear.
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6. Implementation, evaluation and
visualization

This chapter shall give an insight into the solver functionality of the simulation.
Important sub-problems are described and solutions are presented with respect to
efficient hardware-usage. The respective sub-routines of the solver are thereafter
benchmarked, before a final focus will be put on visualization..

6.1 Computational challenges

The sub-steps of the algorithm as summarized at the end of the previous chapter
can be divided into two categories according to their working principle:

1. Node-wise: only information of a single particle and the nodes occupied by it
are needed (Steps 1c, 4a, 4b, 5)

2. All nodes: information of the whole grid is necessary (Steps 1a, 2, 3)

Due to the time restrictions of this thesis, only part of the simulation could be
implemented and tested. The matrix assembly for all necessary matrices has been
implemented successfully with and without the boundary nodes set by homogeneous
Dirichlet conditions. The assembly of the matrices R and S during run-time could
unfortunately not be ported to CUDA in time, as well as the integration of velocity
data over the particle domain.
But with the existing parts of the implementation it is already possible to test the
linear equation solver intended for steps 1a, 2 and 3 on the exact problem. The
algorithm will be explained in the following section.

Furthermore a parallel collision algorithm can already be presented with test results
for different numbers particles.
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6.1.1 An adapted conjugate gradient method

The efficient solution of the linear equation systems arising in the previous chapter
is a complex problem on its own. Usually either a multi-grid solver is employed or
a preconditioned conjugate gradients (CG) solver, as it is done here. The CG solver
is simply faster to implement and fits thus the time frame of this thesis better.

The theoretical background of Krylov space methods and the CG solver as a basic
example can be found in more or less any introduction to numerical mathematics.
The resulting method as presented 1952 by M.R. Hestenes and E. Stiefel reads for
Ax = b with the initial guess being x0 as follows:

r0 := b− Ax0

p0 := r0

k := 0

do

αk :=
rT

k rk

pT
k Apk

xk+1 := xk + αkpk

rk+1 := rk − αkApk

if rk+1 is sufficiently small then exit loop

βk :=
rT

k+1rk+1

rT
k rk

pk+1 := rk+1 + βkpk

k := k + 1

end do

We note that in each step a matrix vector product is needed (qk+1 := Apk), and three
scalar products: two for the computation of α and another for β. The remaining
operations are vector updates with element wise multiplication and addition.

For the implementation on the GPU it would be preferable to combine as much
operations as possible into a single kernel. If for example, each scalar product is
computed by starting the same kernel three times, between each kernel launch all
the GPU’s registers would have to be flushed and re-set.

But in order to perform every scalar product operation in parallel and also all vector
updates, the operation of the CG method have to be re-ordered. At first the problem
arises, that p depends via β on the scalar product involving r, while r depends on
the just updated vectors.

A solution to this was presented in [Meur85] and re-used for FPGA-implementation
in [StGö06]. The idea is to substitute ρk+1 := rT

k+1rk+1 by σk, that depends only on
values computed in the previous step:

σk := α2
kq

T
k qk − αkp

T
k qk.
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Algebraically, ρk+1 and σk are identical as we have:

(rk+1 − rk)
T (rk+1 − rk) = (−α2

kApk)
T (−α2

kApk) ⇔

rT
k+1rk+1 − 2 rT

k+1rk
︸ ︷︷ ︸

=0 (r⊥p)

+rT
k rk = α2

k(qk)
T (qk) ⇔

rT
k+1rk+1 = α2

k(qk)
T (qk) − rT

k rk ⇔

rT
k+1rk+1 = α2

k(qk)
T (qk) − αkp

T
k qk ⇔

ρk+1 = σk.

From the numerical point of view, we are of course introducing new round-off errors.
In [StGö06] it was investigated that ρ should be computed right after this update
procedure directly form r. By doing so, the altered CG version keeps the original
behavior concerning convergence and stability.

The new algorithm reads:

r0 := b −Ax0

p0 := r0

k := 0

do

xk+1 := xk + αkpk

rk+1 := rk − αkApk

pk+1 := rk+1 + βkpk

qk+1 := Apk+1

if rk+1 is sufficiently small then exit loop

ρk+1 := rT
k+1rk+1

αk+1 :=
ρk

pT
k+1qk+1

σk+1 := αk+1(q
T
k+1qk+1 − pT

k+1qk+1)

βk+1 :=
σk+1

ρk+1

k := k + 1

end do

This can be perfectly split into three kernels:

1. Update the three vectors xk+1, rk+1 and pk+1 in parallel,

2. Compute the matrix-vector product Apk+1 and

3. Compute the three scalar products rT
k+1rk+1, pT

k+1qk+1 and qT
k+1qk+1 in paral-

lel.
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g lobal void update ( int DIM, double ∗x , double ∗ r , double ∗p , double

∗q , double ∗alpha , double ∗beta )
{

int i , idx=blockIdx . x∗blockDim . x+threadIdx . x ;
for ( i=idx ; i<DIM; i+=gridDim . x∗blockDim . x )
{

x [ i ] += alpha ∗p [ i ] ; //x = x + a lpha ∗ p
r [ i ] −= alpha ∗q [ i ] ; // r = r − a l pha ∗ q
p [ i ] = r [ i ] + beta∗p [ i ] ; //p = r + beta ∗ p

}
}

Listing 6.1: Parallel vector update

Parallel vector update: This is the simplest case, when each thread can process
one element update independently. This is done by looping over all elements
such that consecutive elements are processed by consecutive threads. Listing
6.1 shows the respective CUDA kernel.

Matrix vector product: Here either a gemm (cf. 4.3.1) or spmv kernel (cf. 4.3.2)
is employed, in our case of course a spmv version that uses textures for faster
data accesses. As now the reads to the source vector and writes to the target
vector are not random anymore, it is expected that using explicit prefetching
to shared memory might be of benefit here. Because of the limited time frame
of this thesis, this approach could unfortunately not be investigated, though
the method is explicitly chosen to result in predictable data dependencies.

Parallel scalar product: Evaluating a scalar product is equal to performing an
element-wise product of the two vectors and a sum reduction thereafter. The
element-wise product can be done as described in the vector-update procedure
above. For the reduction operation there are several possibilities of implemen-
tation, alone seven are presented in the CUDA SDK.

A main question is, if the final reduction shall be done on the CPU or GPU.
Naturally, the GPU is only faster, if almost all of the streaming processors
are in use, what cannot be satisfied if the number of remaining intermediate
sums is smaller then the SP count. An advantage of using only the GPU for
the whole reduction is the possibility to combine all three kernels in a single
one and thus avoiding the execution overheads. But this would on the other
hand require a complete inter-block synchronization that is currently hardly
manageable with CUDA.

It has been tested to implement a full inter-block synchronization with the help
of atomic functions. These experiments showed, that is was actually faster to
start two kernels then a fused one with synchronization. For our problem this
means, that it is more efficient to keep three separate kernels and also allow
the CPU to do the final reduction.
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6.1.2 Parallel handling of particle collisions

Depending on the number of particles, different work distribution methods promise
best performance:

Low particle count: each thread handles one (possible) collision,

Medium particle count: each thread handles all collisions of a single particle,

High particle count: each thread handles the collisions occurring in a particular
part of the domain.

Between n particles there are n2 possible collisions. If n is significantly lower then
the number of processors cores available, the best results in terms of performance
are surely produced, if each core checks for one possible collision. This distribution
can also be arranged in a way, such that the SP cores read consecutive particle data
and no unnecessary delay is produced.

For an increasing number of particles, it is more reasonable to bind each particle to
an individual SP, and let this one check for possible collisions.

For a high number of particles it is of course a waste of resources to check for
improbable collisions, especially a second or third time when repeating the collision
handling in the same time step of the simulation algorithm. Here, the most promising
approach is to do a domain decomposition, e.g. according to the cube division of the
fluid grid, sort the particles according to the cubes they reside (at least partially) in
and let each processor core resolve the collision in a particular set of cubes.
As it is not to be expected that only particles with consecutive numbers collide,
the data accesses will have random patterns, what will result in large performance
losses. Implementing such a technique needs careful drafting, in order to achieve a
high performance nevertheless.

6.2 Performance evaluation

Conjugate gradients algorithm

The pipelined CUDA implementation of the CG algorithm, as described above has
been compared to implementations with CUBLAS and Intel MKL. As CUBLAS does
not include a sparse matrix-vector multiplication routine, the same manual CUDA
implementation of this kernel was used as for the CUDA-only version. The MKL
version uses csrmv of the SparseBLAS package.

The first tests were conducted for matrices gained from the discretized fluid flow
problem, namely the diffusion problem (step 2). When discretizing the unit cube
with a uniform h for every dimension in space and excluding the boundary nodes in
order to enforce the homogeneous Dirichlet condition, we obtain matrix properties,
as shown in table 6.1.

When evaluating the results gained with the three CG implementations in figure 6.1,
we notice different phenomena:
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Matrix properties

h Dimension Non-zeros

10 6859 151775

20 59319 1426595

30 205379 5072215

40 493039 12336635

Table 6.1: Resulting matrix properties for discretizations of the unit cube

Figure 6.1: Test results of conjugate gradients implementations on the diffusion
problem (left) and a dense matrix (right)

1. Increasing the problem size from 103 sub-cubes to 203 changes the situation
completely, MKL breaks down to 50 % of the previous result while both GPU
implementations gain 100 %, achieving speed-ups over MKL of 2.5 (CUBLAS)
and 3 (CUDA).

2. Further increasing of the problem size to a tripled and octupled matrix dimen-
sion does not have a major influence on the performance result.

3. For the grid sizes 203 to 403 the CUDA-only implementation achieves ≈ 1.2
to 1.4 GFLOPS, resulting in a speed-up of 3 to 3.9 compared to MKL and 1.2
over CUBLAS.

For comparison, also tests with dense matrices have been conducted in order to
eliminate the influence of the sparse matrix-vector multiplication. Before discussing
the results it is to be further notices, that for the problems considered also the vector
sizes are much smaller, resulting in a lower influence of the vector-only operations.
Opposite to the sparse matrix tests, now the CUDA version is equipped with the
CUBLAS gemm implementation.

The results can be found in figure 6.1 as well and show again interesting figures:
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1. The MKL implementation can again only achieve between 0.32 and 0.36 GFLOPS,
no benefit is gained from the dense data structure.

2. CUDA and CUBLAS can increase their performance by a factor of 2, when
the problem size is quadrupled. (Note, the vector operations are done only on
doubled dimensions).

3. The influence of the pipelined vector operations is much higher, resulting in a
speed-up of CUDA compared to CUBLAS of 1.3 to 1.6.

4. The maximum speed-up of CUDA over MKL is 19.6 and achieved for the
largest problem size.

We, can conclude again, that the main performance obstacle of the GPU is non-
uniform memory access, what is clearly to be seen when comparing sparse an dense
CG results. Furthermore it has been again of value to invest time to develop a
hardware-fitted version, thereby achieving 20 to 60 % better results then the provided
library, though only using standard kernels.

Particle collision algorithm

The collision sub-step can be divided into two phases, the resolution of particle-
particle collisions and particle-wall collisions. The basic implementation used here,
assumes a medium number of particles and thus assigns every particle to specific
thread. The sequential CPU version though uses only one thread and loops over all
particles instead.

Figure 6.2: Test results for particle collision implementations for different particle
counts

As expected the CPU performance is really low for this non-optimized code, again
only about 1 GFLOPS. Far more interesting are the results gained with the CUDA
implementation. Again it becomes visible, how important coalesced reads and uni-
form thread behavior is for this architecture. The peak performance of 20 GFLOPS
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can be considered as quite high, compared to the standard kernels benchmarked in
chapter 4

Figure 6.2 shows besides the mentioned CUDA and plain C versions also another
one that uses shared memory in order to cache the particle positions of all particles
prior to starting the collision check. Obviously this creates an overhead that leads to
performance break downs of up to 60 %. The reads from global memory seem to be
already perfectly aligned, such that saving and loading values from shared memory
is a futile detour.

6.3 Visualization

Visualizing fluids in three dimensions, in a way that all important information is
clearly visible is an elaborate task, that is complicated even more when particles
are involved. Though much research has been conducted in the field of 3D flow
visualization, examples of particulate flow visualization are rare. The consequence
was to develop an own visualization system that displays not only the particles within
the three-dimensional domain, but gives also information on the fluid behavior.

In order not to loose time by low-level graphics programming, the OpenGL based
Visualization Toolkit (VTK) was employed. VTK is an open source C++ class
library that is widely used in science for tasks in 2D and 3D visualization.

The sphere-shaped particles considered in this thesis can be created in a simple way
with the built-in features of VTK. A number of vtkSphereSource objects is created
that represent spheres discretized by polygons. These spheres can be simply varied
in size and color and rendered on the screen. In order to emphasize the domain
geometry, small tubes can for example be drawn along the edges (vtkCubeSource,
vtkExtractEdges, vtkTubeFilter).

Figure 6.3: Particle and a cut-plane visualizing the fluid flow speed
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Standard techniques for visualizing flows in three-dimensions include

• Cut-planes that visualize one slice of the fluid velocity or pressure field (cf.
figure 6.3),

• Glyphs that indicate the flow directions and magnitude by arrows or other
symbols(cf. figure 6.4),

• Stream lines, indicating the trajectory of a virtual fluid particle,

• Indicator particles, that flow along the fluid and follow stream lines,

• Iso-surface, that combine points of the same value in the fluid field into a
surface.

From the above mentioned methods several could automatically be excluded, such
as iso-surfaces and indicator particles. These would clearly not support the presen-
tiveness of the particulate flow visualization. Stream-lines can be of high interest,
when only a few particles are involved, but is not the case this thesis focuses on.

The remaining techniques are glyphs and cut-planes. When thinking of a high
particle density, such as shown in figure 6.5 also glyphs are not eligible anymore
and it is doubtful what information could be drawn from a fixed cut-plane during
run-time.

Figure 6.4: Flow field visualization using glyphs
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Figure 6.5: One thousand particles visualized using VTK

6.4 Summary

The results gained from the partial implementation of particulate flow simulation
backup and complement the findings from chapter 4. GPUs are well suited to ac-
celerate problems of computational fluid dynamics, not as much as advertisements
promise, but with considerable speed-ups. These improvements compared to the
already optimized MKL library already be achieved partially with comparably low
effort, by simply redirecting calls to CUBLAS.

It proved further useful to hand-optimize the kernel for particular sub-routines,
however the benefit is hard to predict in general. The same applies to the usage
of shared memory: being very useful in some cases, we got significant performance
losses for our particle collision algorithm.

In order to survey the collision tests, a visualization tool was implemented that was
equipped with basic add-ons for fluid visualization. As long as the particle density
is not too high, common visualization techniques for fluids can be used. In the
case of many or clustered particles, it remains an open questions how to maintain
presentiveness.



7. Conclusion and future
directions

7.1 Performance of GPUs in scientific computing

The tests conducted in chapter 4 have shown that for single kernels out of the
BLAS collection, the speed-ups achieved in comparison to the also highly optimized
Intel MKL library are up to 20 and mostly at least 10, when transfers are not
taken into account. For an algorithm that can hide host-device memory transfers
by calculations, this improvement is impressive, especially with regard to the low
financial effort to be undertaken.

The assessment turns out different for algorithms that are not as computationally
intensive or cannot provide coalesced reads and writes, or use indirect addressing.
An example thoroughly studied, was the spmv kernel, that has been benchmarked
individually with different implementations and within a CG algorithm. Here the
measured speed-ups were only 2, without transfer overheads and 3 as part of the CG
solver. At this point it is to be considered, whether to invest into a graphics card or
more CPU core.

When also taking the results into account, that were obtained with tests based on
particle interaction, we can give a positive evaluation for the usage of GPUs for the
particulate flow problem. Here the results achieved were up to 60 times higher then
for a sequential CPU code.

As it has been discussed in depth in this thesis, an answer whether or not GPUs
are qualified for tasks in scientific computing cannot be given in general, as the
absolute performance and possible speed-up is highly problem dependent. The ar-
chitectural properties and the restrictions resulting from them, do not favor highly
coupled problems with irregular data dependencies. Only algorithms with low data
dependencies and high computational intensity can make full use of the SIMD model
and achieve the theoretical speed-ups between 50 and 100.



104 7. Conclusion and future directions

7.2 Expenditure and benefit of hardware-aware

numerical mathematics

The example of CUDA shows, that a sophisticated hardware architecture does not
necessarily require complicated low-level programming. In the meantime between
starting and finishing this paper, CUDA has developed towards a stable program-
ming tool, allowing even directly debugging GPU code. At the beginning the devel-
opment of CUDA programs was slowed down by major bugs in memory management
and also the provided libraries. These issues seem to be resolved, such that effec-
tive code generation is possible with fairly low additional effort. Practice in CUDA
programming is gained quickly and even complicated algorithms are not harder to
develop then with e.g. MPI.

The results in chapter 4 show, that programming on CUDA level is not even nec-
essary when standard CUBLAS or CUFFT routines can be applied. In the case of
CUBLAS, the results are fairly good and already adapted to the specific graphics
cards. In this case, it is surely not advisable to invest further effort. The spmv
example showed in addition, that with simple and quickly integrated texture opera-
tions even better results can be achieved then with more complicated shared memory
management.

In the case of CUFFT, counterexamples on the other hand showed that up to three
times higher performance is possible with even more optimized implementations. In
this case, dealing with the particular hardware possibilities did result in a significant
speed-up.

From the experience gained in this thesis, we can conclude, that it is possible to
achieve considerable performance improvements in short time by outsourcing com-
putational intensive tasks to the GPU with the help of CUBLAS or CUFFT. Manual
CUDA programming can be of benefit if data accesses are structured and at best
continuously. In this case the usage of textures most probably further increases the
performance. Working with the GPUs shared memories can lead to improvements in
particular situations, but creates new difficulties e.g. in terms of concurrent writes.

7.3 Future Directions

7.3.1 Particulate flow modeling and accuracy improvements

The current simulation method is not yet optimized for accuracy. It is to be clarified,
that the method is not expected to produce wrong results, but with increasing prob-
lem complexity, the deviations from data gained in laboratory experiments might
increase.

First of all, we have to remind of the model improvements concerning fluid-structure
interaction given in 2.3.5. When more complex problems are to be analyzed, the
model has to be extended respectively. An open question remains, whether the con-
tinuum hypothesis, that constituted the basis of our work and the resulting Navier-
Stokes equations correctly model the physical processes and if not in general, on
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what scales they hold. At this point we can only rely on the fact, that data gained
by solving the Navier-Stokes equations has proven to map real-world phenomena
sufficiently well in the past.

Another source of possible errors is the very basic collision model. Here, further
research has to be conducted, in order to accurately model the processes happening
in the fluid film between two approaching particles and derive methods that can be
applied without introducing a much smaller scale.

Concerning the discretization, second order in time accuracy is an improvement
that can be achieved with fairly few extra work, further improvements will need
substantially more effort.

7.3.2 Outlook on future hardware and programming models

The development of CUDA and the preparation of GPUs to take over more general
computational tasks has only been the first big step towards effectively combin-
ing the advantages of compute cores and classical x86 processors. In the long run,
accelerators might even evolve in direction of a fusion between GPU and CPU archi-
tectures. Currently all three major GPU fabricators, AMD, Intel and NVIDIA are
working on solution that address this hybrid chip in different ways. Meanwhile an
open source framework aims to facilitate programming these new types of hardware.

MIMD/x86 GPUs and G/CPUs

• AMD Fusion: This project is currently in an early stage, such that not
much reliable information is available. Fusions is based on a modular many-
core concept, including general processor cores as well as GPU-like cores for
computational intensive tasks on the same chip. This way, the problem of
the bandwidth bottleneck PCIe is avoided, such that data can be transferred
into the compute cores with high throughput. It will be interesting to see
how the work division on the cores will be arranged, if (semi-)automatically or
manually as it is done with Cell.

• Intel Larrabee: The Larrabee project approaches the CPU/GPU hybrid
from the CPU side. A many-core CPU is built by combining 32+ cores of an
earlier architecture (Intel Pentium) that has been enriched with more SIMD
units to catch up with the performance achieved by current GPUs. This con-
cept allows high performance, when pipelining and/or vector processing is
possible, while other conveniences of x86 multi-core CPUs are preserved, such
as cache coherency over the whole chip.

From the current information available, Larrabee will firstly only be available
as add-on PCIe card, thus not solving the bus bandwidth issue. There is not
much information on the programming method available, only that besides the
x86 instructions, Larrabee specific instructions will be introduced. It will be
possible to use Larrabee as GPU, such that also programming via DirectX and
OpenGL will be an option as well.
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• NVIDIA GT300: As announced by NVIDIA, the next generation GT300
GPU series will further leave traditional GPU stream processing and rather
constitute a cGPU design, where c stands for compute and refers to the claim
to outsource more and more tasks to the graphics card. This represents a
CPU/GPU hybrid approach from the GPU side. An improvement will also be
the possibility to use MIMD processing on 512 cores instead of SIMD on 240
as before. As reliable details are missing the impact on the programming style
and the new possibilities cannot yet be estimated.

OpenCL: One of the biggest problems with using accelerators so far is, that every
architecture depends on a different programming model, that is not compatible
with another. An answer to this might be given by OpenCL (Open Computing
Language), a framework for developing programs across heterogeneous plat-
forms. As well as CUDA, OpenCL is C99 based and differentiates between
standard host code and kernels that execute on OpenCL devices. Particu-
lar APIs will then define and control the platforms. It will be interesting how
OpenCL will facilitate the development for different architectures and how fast
the manufacturers of accelerator hardware adopt to the new open standard and
if the performance of dedicated programming tools can be maintained.

It is to be concluded, that in the short and medium term, accelerators
will continuously play an important role in scientific computing, achiev-
ing significant to enormous performance improvements over commodity
hardware.

In the long run, the developments are hard to predict, but it is for certain
that numerical methods and algorithm design will have to evolve along-
side the trends in hardware if satisfactory performance result are to be
achieved.
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A.1 Element matrices of the discrete particulate

flow problem

For the tetrahedra shown in figure A.1, we derived general expressions for the element
matrices in section 5.2.3.2.

Figure A.1: Tetrahedra used for triangulation of Ω.

Specifically, for the tetrahedra embedded into cubes of edge length h, we obtain the
following element matrices for the tetrahedra I to VI.
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Pressure element stiffness matrix

BI = BIV =
h

6







2 −1 0 −1
−1 2 −1 0

0 −1 1 0
−1 0 0 1







BII = BV =
h

6







2 −1 0 −1
−1 1 0 0

0 0 1 −1
−1 0 −1 2







BIII = BV I =
h

6







1 0 0 −1
0 1 −1 0
0 −1 2 −1

−1 0 −1 2







Velocity (component) element stiffness matrices

A′

I = A′

IV =
h

30



















6 -5 1 -2 1 0 -5 2 1 1
-5 24 -5 -4 0 1 0 -4 -8 1
1 -5 6 2 -5 1 1 -2 1 0
-2 -4 2 24 -8 -1 4 -12 -4 1
1 0 -5 -8 16 -4 -4 4 0 0
0 1 1 -1 -4 3 0 1 -1 0
-5 0 1 4 -4 0 16 -8 0 -4
2 -4 -2 -12 4 1 -8 24 -4 -1
1 - 8 1 -4 0 -1 0 -4 16 -1
1 1 0 1 0 0 -4 -1 -1 3



















A′

II = A′

V =
h

30



















6 -5 1 -2 1 0 -5 2 1 1
-5 16 -4 4 0 0 0 -8 -4 1
1 -4 3 1 -1 0 1 -1 0 0
-2 4 1 24 -4 -1 -4 -12 -8 2
1 0 -1 -4 16 -1 -8 -4 0 1
0 0 0 -1 -1 3 1 1 -4 1
-5 0 1 -4 -8 1 24 -4 0 -5
2 -8 -1 -12 -4 1 -4 24 4 -2
1 - 4 0 -8 0 -4 0 4 16 -5
1 1 0 2 1 1 -5 -2 -5 6


















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A′

III = A′

V I =
h

30



















3 -1 0 -1 0 0 -4 1 1 1
-1 16 -1 -4 0 1 0 -4 -8 1
0 -1 3 1 -4 1 0 -1 1 0

-1 -4 1 24 4 -2 -8 -12 -4 2
0 0 -4 4 16 -5 -4 -8 0 1
0 1 1 -2 -5 6 1 2 -5 1

-4 0 0 -8 -4 1 16 4 0 -5
1 -4 -1 -12 -8 2 4 24 -4 -2
1 - 8 1 -4 0 -5 0 -4 24 -5
1 1 0 2 1 1 -5 -2 -5 6



















Velocity (component) element mass matrix

M ′

T =
h3

2520



















6 -4 1 -4 -6 1 -4 -6 -6 1
-4 32 -4 16 16 -6 16 16 8 -6
1 -4 6 -6 -4 1 -6 -4 -6 1

-4 16 -6 32 16 -4 16 8 16 -6
-6 16 -4 16 32 -4 8 16 16 -6
1 -6 1 -4 -4 6 -6 -6 -4 1

-4 16 -6 16 8 -6 32 16 16 -4
-6 16 -4 8 16 -6 16 32 16 -4
-6 8 -6 16 16 -4 16 16 32 -4
1 -6 1 -6 -6 1 -4 -4 -4 6



















Velocity (component) pressure-gradient element matrices

C ′
1,I = C ′

2,IV = C ′
2,II = C ′

1,V = C ′
2,I = C ′

1,IV = C ′
1,III = C ′

2,V I =

h2

120



















1 -1 0 0
-4 4 0 0
1 -1 0 0
-4 4 0 0
-4 4 0 0
1 -1 0 0
-4 4 0 0
-4 4 0 0
-4 4 0 0
1 -1 0 0



















h2

120



















0 1 -1 0
0 -4 4 0
0 1 -1 0
0 -4 4 0
0 -4 4 0
0 1 -1 0
0 -4 4 0
0 -4 4 0
0 -4 4 0
0 1 -1 0


















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C ′
1,II = C ′

2,V = C ′
2,III = C ′

1,V I = C ′
3,t|t=I,...,V I

=

h2

120



















0 0 1 -1
0 0 -4 4
0 0 1 -1
0 0 -4 4
0 0 -4 4
0 0 1 -1
0 0 -4 4
0 0 -4 4
0 0 -4 4
0 0 1 -1



















h2

120



















1 0 0 -1
-4 0 0 4
1 0 0 -1

-4 0 0 4
-4 0 0 4
1 0 0 -1

-4 0 0 4
-4 0 0 4
-4 0 0 4
1 0 0 -1



















Velocity-divergence (component) pressure element matrices

D′

1,I = D′

2,IV = D′

2,II = D′

1,V

h2

120







-3 4 -1 -4 4 0 -4 4 0 0
1 -4 3 -4 4 0 -4 4 0 0
1 0 -1 - 8 8 0 -4 4 0 0
1 0 -1 -4 4 0 -8 8 0 0







D′

2,I = D′

1,IV = D′

1,III = D′

2,V I =

h2

120







0 -8 1 8 0 -1 0 -4 4 0
0 -4 -3 4 4 -1 0 -4 4 0
0 -4 1 4 -4 3 0 -4 4 0
0 -4 1 4 0 -1 0 -8 8 0







D′

1,II = D′

2,V = D′

2,III = D′

1,V I =

h2

120







0 0 0 -8 -4 1 8 4 0 -1
0 0 0 -4 -8 1 4 8 0 -1
0 0 0 -4 -4 -3 4 4 4 -1
0 0 0 -4 -4 1 4 4 -4 3







D′

3,I = D′

3,II = D′

3,III = D′

3,IV = D′

3,V = D′

3,V I

h2

120







-3 -4 0 -4 0 0 4 4 4 -1
1 -8 0 -4 0 0 0 8 4 -1
1 -4 0 - 8 0 0 0 4 8 -1
1 -4 0 -4 0 0 -4 4 4 3






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A.2 Structure plots of matrices

A discretization into 4 × 4 × 4 cubes yields the following matrices.

Number of elements: 4 × 4 × 4 × 6 = 384
Number of pressure nodes: 5 × 5 × 5 = 125
Number of velocity nodes: 9 × 9 × 9 = 729

Figure A.2: Pressure stiffness matrix B
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Figure A.3: Velocity stiffness matrix A

Figure A.4: Velocity mass matrix M
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Figure A.5: Velocity pressure-gradient matrix C

Figure A.6: Velocity-divergence pressure matrix D
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