Virus-like particles (VLPs)

Virus-like particles (VLPs) consist of viral capsid proteins that assemble into macromolecular, particulate structures. Their repetitive and particulate structure stimulates the immune system similar to inactivated whole virus vaccines without the residual risk of infection in the latter. VLPs that present foreign antigens are called chimeric VLPs. This can be exploited, for example, in cancer immunotherapy, the immunotherapy of Alzheimer's disease and protection against infectious diseases. In addition to their immunological effect, VLPs have been used in some studies as targeted carrier structures for peptides, nucleic acids and drugs. The packaging of nucleic acids is of particular interest because of its proximity to the actual function of the viral capsid protein (which packages viral nucleic acids). Compared to monoclonal antibodies (mAbs), the processing of VLPs poses special challenges, e.g. because of their significantly larger geometry. At the chair we optimize the purification, processing and design of VLPs and genetic material. We use high-throughput methods, process analytical technology (PAT) and statistical methods such as machine learning.

Literature
2019
Rüdt, M.; Vormittag, P.; Hillebrandt, N.; Hubbuch, J. (2019). Process monitoring of virus-like particle reassembly by diafiltration with UV/Vis spectroscopy and light scattering. Biotechnology & bioengineering, 116 (6), 1366–1379. doi:10.1002/bit.26935
2017
Hämmerling, F.; Pieler, M. M.; Hennig, R.; Serve, A.; Rapp, E.; Wolff, M. W.; Reichl, U.; Hubbuch, J. (2017). Influence of the production system on the surface properties of influenza A virus particles. Engineering in life sciences, 17 (10), 1071–1077. doi:10.1002/elsc.201700058
Hämmerling, F.; Lorenz-Cristea, O.; Baumann, P.; Hubbuch, J. (2017). Strategy for assessment of the colloidal and biological stability of H1N1 influenza A viruses. International journal of pharmaceutics, 517 (1-2), 80–87. doi:10.1016/j.ijpharm.2016.11.058
2016
Effio, C. L.; Hahn, T.; Seiler, J.; Oelmeier, S. A.; Asen, I.; Silberer, C.; Villain, L.; Hubbuch, J. (2016). Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles. Journal of chromatography, 1429, 142–154. doi:10.1016/j.chroma.2015.12.006
Effio, C. L.; Baumann, P.; Weigel, C.; Vormittag, P.; Middelberg, A.; Hubbuch, J. (2016). High-throughput process development of an alternative platform for the production of virus-like particles in Escherichia coli. Journal of biotechnology, 219, 7–19. doi:10.1016/j.jbiotec.2015.12.018
2015
Effio, C. L.; Wenger, L.; Oetes, O.; Oelmeier, S. A.; Kneusel, R.; Hubbuch, J. (2015). Downstream processing of virus-like particles: Single-stage and multi-stage aqueous two-phase extraction. Journal of chromatography / A, 1383, 35–46. doi:10.1016/j.chroma.2015.01.007
2014
Ladd Effio, C.; Hubbuch, J. (2014). Meeting Report VLPNPV: Session 10: Virus-like particle and nano-particle vaccines. Human vaccines & immunotherapeutics, 10 (10), 3080–3082. doi:10.4161/hv.29840

Protein conjugation

The term protein conjugation describes the insertion of non-proteinogenic groups into protein molecules. The aim of this process is the production of molecules with unique properties. The covalent attachment of synthetic polymers to pharmaceutical proteins is a promising approach to alter physical properties such as thermal stability, solubility and tolerance to organic solvents. Furthermore, physiological properties like the half-life in circulation and the immune tolerance can be improved. The most common polymer modification in the pharmaceutical industry is the covalent attachment of polyethylene glycol (PEG) to the target molecule (PEGylation).

In cancer therapy the potential of antibody-drug conjugates (ADC) is made use of. In this case, biologically active cytotoxic drugs are coupled to monoclonal antibodies (mAbs) via a covalent linker. This way the specificity of the mAbs for antigens expressed on the cancer cells enables the targeted delivery of the cytotoxic payload mitigating the systemic effect of the drug. The bottleneck in the development of ADCs is the complex reaction kinetic and the purification. Therefore, our research focus lies in process development, control and also the application of digital tools.

Literature
2019
Andris, S.; Seidel, J.; Hubbuch, J. (2019). Kinetic reaction modeling for antibody-drug conjugate process development. Journal of biotechnology, 306, 71–80. doi:10.1016/j.jbiotec.2019.09.013
2018
Morgenstern, J.; Gil Alvaradejo, G.; Bluthardt, N.; Beloqui, A.; Delaittre, G.; Hubbuch, J. (2018). Impact of Polymer Bioconjugation on Protein Stability and Activity Investigated with Discrete Conjugates: Alternatives to PEGylation. Biomacromolecules, 19 (11), 4250–4262. doi:10.1021/acs.biomac.8b01020
Andris, S.; Rüdt, M.; Rogalla, J.; Wendeler, M.; Hubbuch, J. (2018). Monitoring of antibody-drug conjugation reactions with UV/Vis spectroscopy. Journal of biotechnology, 288, 15–22. doi:10.1016/j.jbiotec.2018.10.003
Andris, S.; Wendeler, M.; Wang, X.; Hubbuch, J. (2018). Multi-step high-throughput conjugation platform for the development of antibody-drug conjugates. Journal of biotechnology, 278, 48–55. doi:10.1016/j.jbiotec.2018.05.004
2017
Morgenstern, J.; Wang, G.; Baumann, P.; Hubbuch, J. J. (2017). Model-Based Investigation on the Mass Transfer and Adsorption Mechanisms of Mono-Pegylated Lysozyme in Ion-Exchange Chromatography. Biotechnology journal, 12 (9), Art.Nr.: 1700255. doi:10.1002/biot.201700255
Morgenstern, J.; Baumann, P.; Brunner, C.; Hubbuch, J. (2017). Effect of PEG molecular weight and PEGylation degree on the physical stability of PEGylated lysozyme. International journal of pharmaceutics, 519 (1-2), 408–417. doi:10.1016/j.ijpharm.2017.01.040
2015
Maiser, B.; Baumgartner, K.; Dismer, F.; Hubbuch, J. (2015). Effect of lysozyme solid-phase PEGylation on reaction kinetics and isoform distribution. Journal of chromatography / B, 1002, 313–318. doi:10.1016/j.jchromb.2015.08.027
2014
Maiser, B.; Dismer, F.; Hubbuch, J. (2014). Optimization of random PEGylation reactions by means of high throughput screening. Biotechnology & bioengineering, 111 (1), 104–114. doi:10.1002/bit.25000
2012
Hansen, S. K.; Maiser, B.; Hubbuch, J. (2012). Rapid quantification of protein-polyethylene glycol conjugates by multivariate evaluation of chromatographic data. Journal of chromatography / A, 1257, 41–47. doi:10.1016/j.chroma.2012.07.089
Maiser, B.; Kröner, F.; Dismer, F.; Brenner-Weiß, G.; Hubbuch, J. (2012). Isoform separation and binding site determination of mono-PEGylated lysozyme with pH gradient chromatography. Journal of Chromatography A, 1268, 102–108. doi:10.1016/j.chroma.2012.10.047

Ultra-/Diafiltration

Ultrafiltration (UF) and diafiltration (DF) of biopharmaceutical protein solutions are standard unit operations for concentration and buffer exchange, respectively. We investigate processes that go beyond the usual size-dependent separation of the product from the surrounding liquid phase or impurities. Our research includes I) the product-specific development of process analytical technologies (PAT) including multiple sensors and custom-made software to enable real-time monitoring and control of UF/DF processes, II) the development of integrated processes by combination of UF/DF with other unit operations, such as precipitation/re-dissolution, size-exclusion chromatography, or biochemical reactions, and III) the development of experimental strategies for mechanistic modeling of UF/DF processes in co-operation with GoSilico GmbH.

Literatur
2020
Rolinger, L.; Rüdt, M.; Diehm, J.; Chow-Hubbertz, J.; Heitmann, M.; Schleper, S.; Hubbuch, J. (2020). Multi-attribute PAT for UF/DF of Proteins—Monitoring Concentration, particle sizes, and Buffer Exchange. Analytical and bioanalytical chemistry, 412 (9), 2123–2136. doi:10.1007/s00216-019-02318-8
2019
Rüdt, M.; Vormittag, P.; Hillebrandt, N.; Hubbuch, J. (2019). Process monitoring of virus-like particle reassembly by diafiltration with UV/Vis spectroscopy and light scattering. Biotechnology & bioengineering, 116 (6), 1366–1379. doi:10.1002/bit.26935

Crystallisation

Crystallisation offers the biopharmaceutical industry an interesting, cost effective alternative to conventional separation and formulation methods. Due to the complex mechanisms during protein crystallisation optimal process conditions require empirical workflows. Undesired aggregation may lead to product loss and change in the three-dimensional structure of the target molecule. Therefore, knowledge of protein phase behaviour is essential for downstream process design.

At our institute screening methods are developed to generate phase diagrams in high throughput on an automated liquid handling station in microbatch scale. Automated supernatant measurements and sample imaging with a high-resolution camera provide information on the phase behaviour of the target protein in a complex protein mix to study the influence of process parameters, such as type and concentration of salts/polymers, temperature or pH.

Literature
2019
Großhans, S.; Wang, G.; Hubbuch, J. (2019). Water on hydrophobic surfaces: mechanistic modeling of polyethylene glycol-induced protein precipitation. Bioprocess and biosystems engineering, 42 (4), 513–520. doi:10.1007/s00449-018-2054-5
Hubbuch, J.; Kind, M.; Nirschl, H. (2019). Preparative Protein Crystallization. Chemical engineering & technology, 42 (11), 2275–2281. doi:10.1002/ceat.201800627
2017
Hämmerling, F.; Ladd Effio, C.; Andris, S.; Kittelmann, J.; Hubbuch, J. (2017). Investigation and prediction of protein precipitation by polyethylene glycol using quantitative structure–activity relationship models. Journal of biotechnology, 241, 87–97. doi:10.1016/j.jbiotec.2016.11.014
2015
Kittelmann, J.; Ottens, M.; Hubbuch, J. (2015). Robust high-throughput batch screening method in 384-well format with optical in-line resin quantification. Journal of chromatography / B, 988, 98–105. doi:10.1016/j.jchromb.2015.02.028

Other topics

Automation and High-throughput process development (HTPD)

Literature
2019
Hansen, S. H.; Kabbeck, T.; Radtke, C. P.; Krause, S.; Krolitzki, E.; Peschke, T.; Gasmi, J.; Rabe, K. S.; Wagner, M.; Horn, H.; Hubbuch, J.; Gescher, J.; Niemeyer, C. M. (2019). Machine-assisted cultivation and analysis of biofilms. Scientific reports, 9 (1), Article: 8933. doi:10.1038/s41598-019-45414-6
Celikic, M.; Klein, E.; Hansen, S.; Horn, H.; Gescher, J.; Niemeyer, C. M. (2019). Machine-assisted cultivation and analysis of biofilm in microfluidic bioreactors. Annual Conference of the Association for General and Applied Microbiology (VAAM 2019), Mainz, Deutschland, 17.–20. März 2019.
2018
Andris, S.; Wendeler, M.; Wang, X.; Hubbuch, J. (2018). Multi-step high-throughput conjugation platform for the development of antibody-drug conjugates. Journal of biotechnology, 278, 48–55. doi:10.1016/j.jbiotec.2018.05.004
Hansen, S. H.; Kabbeck, T.; Radtke, C. P.; Krause, S.; Krolitzki, E.; Peschke, T.; Gasmi, J.; Rabe, K. S.; Wagner, M.; Horn, H.; Hubbuch, J.; Gescher, J.; Niemeyer, C. M. (2018). Machine-assisted cultivation and analysis of biofilms. Jahrestagung der Vereinigung für Allgemeine und Angewandte Mikrobiologie / VAAM (2018), Wolfsburg, Deutschland, 15.–18. April 2018.
2017
Diederich, P.; Hubbuch, J. (2017). High-Throughput Column Chromatography Performed on Liquid Handling Stations – Process Characterization and Error Analysis. Preparative Chromatography for Separation of Proteins. Ed.: A. Staby, 293–332, John Wiley & Sons, Inc., Hoboken, NJ, USA. doi:10.1002/9781119031116.ch10
Zimmermann, S.; Scheeder, C.; Zimmermann, P. K.; Bogsnes, A.; Hansson, M.; Staby, A.; Hubbuch, J. (2017). High-throughput downstream process development for cell-based products using aqueous two-phase systems (ATPS) – A case study. Biotechnology journal, 12 (2), 1600587. doi:10.1002/biot.201600587
2016
Baumann, P.; Huuk, T.; Hahn, T.; Osberghaus, A.; Hubbuch, J. (2016). Deconvolution of high-throughput multicomponent isotherms using multivariate data analysis of protein spectra. Engineering in life sciences, 16 (2), 194–201. doi:10.1002/elsc.201400243
Radtke, C. P.; Schermeyer, M.-T.; Zhai, Y. C.; Goepper, J.; Hubbuch, J. (2016). Implementation of an analytical microfluidic device for the quantification of protein concentrations in high-throughput format. Engineering in life sciences / Special Issue: Molecular Interaction Engineering, 16 (6), 515–524. doi:10.1002/elsc.201500185
Radtke, C. P.; Delbe, M.; Woerner, M.; Hubbuch, J. (2016). Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept. Engineering in life sciences / Special Issue: Molecular Interaction Engineering, 16 (6), 505–514. doi:10.1002/elsc.201500186
Amrhein, S.; Suhm, S.; Hubbuch, J. (2016). Surface tension determination by means of liquid handling stations. Engineering in life sciences / Special Issue: Molecular Interaction Engineering, 16 (6), 532–537. doi:10.1002/elsc.201500179
Zimmermann, S.; Gretzinger, S.; Schwab, M.-L.; Scheeder, C.; Zimmermann, P. K.; Oelmeier, S. A.; Gottwald, E.; Bogsnes, A.; Hansson, M.; Staby, A.; Hubbuch, J. (2016). High-throughput downstream process development for cell-based products using aqueous two-phase systems. Journal of chromatography / A, 1464, 1–11. doi:10.1016/j.chroma.2016.08.025
Huuk, T. C.; Briskot, T.; Hahn, T.; Hubbuch, J. J. (2016). A versatile noninvasive method for adsorber quantification in batch and column chromatography based on the ionic capacity. Biotechnology Progress, 32 (3), 666–677. doi:10.1002/btpr.2228
2015
Diederich, P.; Hoffmann, M.; Hubbuch, J. (2015). High-throughput process development of purification alternatives for the protein avidin. Biotechnology progress, 31 (4), 957–973. doi:10.1002/btpr.2104
Amrhein, S.; Bauer, K. C.; Galm, L.; Hubbuch, J. (2015). Non-invasive high throughput approach for protein hydrophobicity determination based on surface tension. Biotechnology and Bioengineering, 112 (12), 2485–2494. doi:10.1002/bit.25677
Kittelmann, J.; Hämmerling, F.; Ebeler, M.; Hubbuch, J. (2015). Light extinction and scattering by agarose based resin beads and applications in high-throughput screening. Journal of chromatography / A, 1397, 52–58. doi:10.1016/j.chroma.2015.04.013
2014
Berg, A.; Schuetz, M.; Dismer, F.; Hubbuch, J. (2014). Automated measurement of apparent protein solubility to rapidly assess complex parameter interactions. Food and bioproducts processing, 92 (2), 133–142. doi:10.1016/j.fbp.2013.10.002
Richter, C.; Bickel, F.; Osberghaus, A.; Hubbuch, J. (2014). High-throughput characterization of an insect cell-free expression. Engineering in life sciences, 14 (4), 409–417. doi:10.1002/elsc.201300118
Amrhein, S.; Schwab, M.-L.; Hoffmann, M.; Hubbuch, J. (2014). Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations. Journal of chromatography / A, 1367, 68–77. doi:10.1016/j.chroma.2014.09.042
Kittelmann, J.; Radtke, C. P.; Waldbaur, A.; Neumann, C.; Hubbuch, J.; Rapp, B. E. (2014). Microfluidics on liquid handling stations (μF-on-LHS): A new industry-compatible microfluidic platform. Microfluidics, BioMEMS, and Medical Microsystems XII : Proceedings of Photonics West, San Francisco, Calif., February 2-4, 2014. Ed.: B. L. Gray, Article no 89760G, SPIE, Bellingham, WA. doi:10.1117/12.2044665
Waldbaur, A.; Kittelmann, J.; Radtke, C. P.; Hubbuch, J.; Rapp, B. E. (2014). Microfluidics on liquid handling stations (μF-on-LHS): A new industry-compatible microfluidic platform. Microfluidics, BioMEMS, and Medical Microsystems XII, San Francisco, Calif., February 2-4, 2014.
2013
Kröner, F.; Hanke, A. T.; Nfor, B. K.; Pinkse, M. W. H.; Verhaert, P. D. E. M.; Ottens, M.; Hubbuch, J. (2013). Analytical characterization of complex, biotechnological feedstocks by pH gradient ion exchange chromatography for purification process development. Journal of chromatography / A, 1311, 55–64. doi:10.1016/j.chroma.2013.08.034
Waldbaur, A.; Kittelmann, J.; Radtke, C. P.; Hubbuch, J.; Rapp, B. E. (2013). Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations. Lab on a Chip - Miniaturisation for Chemistry and Biology, 13 (12), 2337–2343. doi:10.1039/c3lc00042g
2012
Treier, K.; Hansen, S.; Richter, C.; Diederich, P.; Hubbuch, J.; Lester, P. (2012). High-throughput methods for miniaturization and automation of monoclonal antibody purification processes. Biotechnology progress, 28 (3), 723–732. doi:10.1002/btpr.1533
Hubbuch, J. (2012). Editorial: High-throughput process development. Biotechnology journal, 7 (10), 1185–1185. doi:10.1002/biot.201200333
Berg, A.; Oelmeier, S. A.; Kittelmann, J.; Dismer, F.; Hubbuch, J. (2012). Development and characterization of an automated high throughput screening method for optimization of protein refolding processes. Journal of separation science, 35 (22), 3149–3159. doi:10.1002/jssc.201200306
Wiendahl, M.; Oelmeier, S. A.; Dismer, F.; Hubbuch, J. (2012). High-throughput screening-based selection and scale-up of aqueous two-phase systems for pDNA purification. Journal of separation science, 35 (22), 3197–3207. doi:10.1002/jssc.201200310
Osberghaus, A.; Drechsel, K.; Hansen, S.; Hepbildikler, S.; Nath, S.; Haindl, M.; Lieres, E. von; Hubbuch, J. (2012). Model-integrated process development demonstrated on the optimization of a robotic cation exchange step. Chemical Engineering Science, 76, 129–139. doi:10.1016/j.ces.2012.04.004
Treier, K.; Berg, A.; Diederich, P.; Lang, K.; Osberghaus, A.; Dismer, F.; Hubbuch, J. (2012). Examination of a genetic algorithm for the application in high-throughput downstream process development. Biotechnology Journal, 7 (10), 1203–1215. doi:10.1002/biot.201200145
Osberghaus, A.; Baumann, P.; Hepbildikler, S.; Nath, S.; Haindl, M.; Lieres, E. von; Hubbuch, J. (2012). Detection, quantification, and propagation of uncertainty in high-throughput experimentation by Monte Carlo methods. Chemical Engineering and Technology, 35 (8), 1456–1464. doi:10.1002/ceat.201100610
2011
Diederich, P.; Hansen, S. K.; Oelmeier, S. A.; Hubbuch, J. (2011). A sub-two minutes method for monoclonal antibody-aggregate quantification using parallel interlaced size exclusion high performance liquid chromatography. Journal of Chromatography A, 1218 (50), 9010–9018. doi:10.1016/j.chroma.2011.09.086
2009
Wiendahl, M.; Völker, C.; Husemann, I.; Krarup, J.; Staby, A.; Scholl, S.; Hubbuch, J. (2009). A novel method to evaluate protein solubility using a high throughput screening approach. Chemical engineering science, 64 (17), 3778–3788. doi:10.1016/j.ces.2009.05.029
Susanto, A.; Treier, K.; Knieps-Grünhagen, E.; von Lieres, E.; Hubbuch, J. (2009). High Throughput Screening for the Design and Optimization of Chromatographic Processes: Automated Optimization of Chromatographic Phase Systems. Chemical Engineering & Technology, 32 (1), 140–154. doi:10.1002/ceat.200800350
Nfor, B. K.; Verhaert, P. D. E. M.; van der Wielen, L. A. M.; Hubbuch, J.; Ottens, M. (2009). Rational and systematic protein purification process development: the next generation. Trends in Biotechnology, 27 (12), 673–679. doi:10.1016/j.tibtech.2009.09.002
2008
Susanto, A.; Knieps-Grünhagen, E.; Lieres, E. von; Hubbuch, J. (2008). High Throughput Screening for the Design and Optimization of Chromatographic Processes: Assessment of Model Parameter Determination from High Throughput Compatible Data. Chemical Engineering & Technology, 31 (12), 1846–1855. doi:10.1002/ceat.200800457
Wiendahl, M.; Schulze Wierling, P.; Nielsen, J.; Fomsgaard Christensen, D.; Krarup, J.; Staby, A.; Hubbuch, J. (2008). High Throughput Screening for the Design and Optimization of Chromatographic Processes - Miniaturization, Automation and Parallelization of Breakthrough and Elution Studies. Chemical Engineering & Technology, 31 (6), 893–903. doi:10.1002/ceat.200800167
2007
Wierling, P. S.; Bogumil, R.; Knieps-Grunhagen, E.; Hubbuch, J. (2007). High throughput screening of packed bed chromatography coupled with SELDI-TOF MS analysis: Monoclonal antibodies vs. host cell protein. Biotechnology and Bioengineering, 98 (2), 440–450. doi:10.1002/bit.21399
2006
Herrmann, T.; Schroder, M.; Hubbuch, J. (2006). Generation of equally sized particles using solid-liquid suspensions. Biotechnology Progress, 22 (3), 914–918. doi:10.1021/bp050296i
2005
Wierling, P. S.; Bensch, M.; Schroeder, T.; Hubbuch, J. (2005). Automated microscale high-throughput screening for chromatography resins. Chemie - Ingenieur - Technik, 77 (8), 1240. doi:10.1002/cite.200590165
Bensch, M.; Wierling, P. S.; Selbach, B.; Hubbuch, J. (2005). High throughput screening in downstream processing - Aqueous two phase extraction as a competitive initial purification step. Chemie - Ingenieur - Technik, 77 (8), 1193. doi:10.1002/cite.200590260
Bensch, M.; Wierling, P. S.; Lieres, E. von; Hubbuch, J. (2005). High throughput screening of chromatographic phases for rapid process development. Chemical Engineering & Technology, 28 (11), 1274–1284. doi:10.1002/ceat.200500153

Chromatography

Literature
2016
Winderl, J.; Hahn, T.; Hubbuch, J. (2016). A mechanistic model of ion-exchange chromatography on polymer fiber stationary phases. Journal of chromatography / A, 1475, 18–30. doi:10.1016/j.chroma.2016.10.057
Baumgartner, K.; Amrhein, S.; Oelmeier, S. A.; Hubbuch, J. (2016). The influence of mixed salts on the capacity of HIC adsorbers: A predictive correlation to the surface tension and the aggregation temperature. Biotechnology progress, 32 (2), 346–354. doi:10.1002/btpr.2166
2015
2009
Staby, A.; Nielsen, J.; Krarup, J.; Wiendahl, M.; Hansen, T. B.; Kidal, S.; Hubbuch, J.; Mollerup, J. (2009). Advances in resins for ion-exchange chromatography. Advances in chromatography, 47, 193–245.
2008
Wang, J.; Dismer, F.; Hubbuch, J.; Ulbricht, M. (2008). Detailed analysis of membrane adsorber pore structure and protein binding by advanced microscopy. Journal of Membrane Science, 320 (1-2), 456–467. doi:10.1016/j.memsci.2008.04.039
Hubbuch, J.; Kula, M. R. (2008). Confocal laser scanning microscopy as an analytical tool in chromatographic research. Bioprocess and Biosystems Engineering, 31 (3), 241–259.
2007
Staby, A.; Jensen, R. H.; Bensch, M.; Hubbuch, J.; Dunweber, D. L.; Krarup, J.; Nielsen, J.; Lund, M.; Kidal, S.; Hansen, T. B.; Jensen, I. H. (2007). Comparison of chromatographic ion-exchange resins VI. Weak anion-exchange resins. Journal of Chromatography A, 1164 (1-2), 82–94. doi:10.1016/j.chroma.2007.06.048
Dismer, F.; Hubbuch, J. (2007). A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. Journal of Chromatography A, 1149 (2), 312–320. doi:10.1016/j.chroma.2007.03.074
Teske, C. A.; Simon, R.; Niebisch, A.; Hubbuch, J. (2007). Changes in retention behavior of fluorescently labeled proteins during ion-exchange chromatography caused by different protein surface labeling positions. Biotechnology and Bioengineering, 98 (1), 193–200. doi:10.1002/bit.21374
2006
Wickramasinghe, S. R.; Carlson, J. O.; Teske, C.; Hubbuch, J.; Ulbricht, M. (2006). Characterizing solute binding to macroporous ion exchange membrane adsorbers using confocal laser scanning microscopy. Journal of Membrane Science, 281 (1-2), 609–618. doi:10.1016/j.memsci.2006.04.032
Teske, C. A.; Lieres, E. von; Schröder, M.; Ladiwala, A.; Cramer, S. M.; Hubbuch, J. J. (2006). Competitive adsorption of labeled and native protein in confocal laser scanning microscopy. Biotechnology and Bioengineering, 95 (1), 58–66. doi:10.1002/bit.20940
Schroder, M.; Lieres, E. von; Hubbuch, J. (2006). Direct quantification of intra-particle protein diffusion in chromatographic media. Journal of Physical Chemistry B, 110 (3), 1429–1436. doi:10.1021/jp0542726
2005
Teske, C. A.; Schroeder, M.; Simon, R.; Hubbuch, J. (2005). Protein labelling effects in confocal laser scanning microscopy. Journal of Physical Chemistry B, 109 (28), 13811–13817. doi:10.1021/jp050713+
2003
Hubbuch, J.; Linden, T.; Knieps, E.; Ljunglof, A.; Thommes, J.; Kula, M. R. (2003). Mechanism and dynamics of protein transport in chromatographic media studied by confocal laser scanning microscopy. Part 2: Impact on chromatographic separations. Journal of Chromatography A, 1021 (1-2), 105–115. doi:10.1016/j.chroma.2003.08.092
2002
Hubbuch, J.; Linden, T.; Knieps, E.; Thommes, J.; Kula, M. R. (2002). Dynamics of protein uptake within the adsorbent particle during packed bed chromatography. Biotechnology and Bioengineering, 80 (4), 359–368. doi:10.1002/bit.10500

 

Integrated Unit Operations

Literature
2014
Amrhein, S.; Schwab, M.-L.; Hoffmann, M.; Hubbuch, J. (2014). Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations. Journal of chromatography / A, 1367, 68–77. doi:10.1016/j.chroma.2014.09.042
2012
Oelmeier, S. A.; Dismer, F.; Hubbuch, J. (2012). Molecular dynamics simulations on aqueous two-phase systems - Single PEG-molecules in solution. BMC Biophysics, 5 (1), 14. doi:10.1186/2046-1682-5-14
Wiendahl, M.; Oelmeier, S. A.; Dismer, F.; Hubbuch, J. (2012). High-throughput screening-based selection and scale-up of aqueous two-phase systems for pDNA purification. Journal of separation science, 35 (22), 3197–3207. doi:10.1002/jssc.201200310
2010
Oelmeier, S. A.; Dismer, F.; Hubbuch, J. (2010). Application of an aqueous two-phase systems high-throughput screening method to evaluate mAb HCP separation. Biotechnology and Bioengineering, 108 (1), 69–81. doi:10.1002/bit.22900
2008
Arpanaei, A.; Heebøll-Nielsen, A.; Hubbuch, J. J.; Thomas, O. R. T.; Hobley, T. J. (2008). Critical evaluation and comparison of fluid distribution systems for industrialscale expanded bed adsorption chromatography columns. Journal of Chromatography A, 1198-1199, 131–139. doi:10.1016/j.chroma.2008.05.044
2007
Frerix, A.; Geilenkirchen, P.; Muller, M.; Kula, M. R.; Hubbuch, J. (2007). Separation of genomic DNA, RNA and open circular plasmid DNA from supercoiled plasmid DNA by combining denaturation, selective renaturation and aqueous two phase extraction. Biotechnology and Bioengineering, 96 (1), 57–66. doi:10.1002/bit.21166
2006
Frerix, A.; Schonewald, M.; Geilenkirchen, P.; Muller, M.; Kula, M. R.; Hubbuch, J. (2006). Exploitation of coil-globule pDNA transition induced by small changes in temperature, pH salt and PEG compositions for directed partitioning in aqueous two phase systems. Langmuir, 22 (9), 4282–4290. doi:10.1021/la052745u
Hubbuch, J. J.; Brixius, P. J.; Lin, D.-Q.; Mollerup, I.; Kula, M.-R. (2006). The influence of homogenisation conditions on biomass-adsorbent interactions during ion-exchange expanded bed adsorption. Biotechnology and Bioengineering, 94 (3), 543–553. doi:10.1002/bit.20850
2005
Frerix, A.; Muller, M.; Kula, M. R.; Hubbuch, J. (2005). Scalable recovery of plasmid DNA based on aqueous two-phase separations. Biotechnology and Applied Biochemistry, 42 (1), 57–66.
Hubbuch, J.; Thömmes, J.; Kula, M.-R. (2005). Biochemical Engineering Aspects of Expanded Bed Adsorption. Advances in biochemical engineering, biotechnology, 92, 101–123.
2004
Lin, D.-Q.; Thömmes, J.; Kula, M.-R.; Hubbuch, J. J. (2004). The influence of biomass on the hydrodynamic behaviour and stability of expanded beds. Biotechnology and Bioengineering, 87 (3), 337–346. doi:10.1002/bit.20118
Heebøll-Nielsen, A.; Dalkiær, M.; Hubbuch, J. J.; Thomas, O. R. T. (2004). Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts. Biotechnology and Bioengineering, 87 (3), 311–323. doi:10.1002/bit.20116
2003
Lin, D. Q.; Brixius, P. J.; Hubbuch, J. J.; Thommes, J.; Kula, M. R. (2003). Biomass/adsorbent electrostatic interactions in expanded bed adsorption: a zeta potential study. Biotechnology and Bioengineering, 83 (2), 149–157. doi:10.1002/bit.10654
2002
Hubbuch, J. J.; Thomas, O. R. T. (2002). High gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnology and Bioengineering, 79 (3), 301–313. doi:10.1002/bit.10285
Hubbuch, J. J.; Heeboll-Nielsen, A.; Hobley, T. J.; Thomas, O. R. T. (2002). A New Fluid Distribution System for Scale-Flexible Expanded Bed Adsorption. Biotechnology and Bioengineering, 78 (1), 35–43. doi:10.1002/bit.10170
2001
Fernandez-Lahore, H. M.; Lin, D. Q.; Hubbuch, J. J.; Kula, M. R.; Thommes, J. (2001). The Use of Ion-Selective Electrodes for Evaluating Residence Time Distributions in Expanded Bed Adsorption Systems. Biotechnology Progress, 17 (6), 1128–1136. doi:10.1021/bp010118z
Hubbuch, J. J.; Matthiesen, D. B.; Hobley, T. J.; Thomas, O. R. T. (2001). High gradient magnetic separation versus expanded bed adsorption: A first principle comparison. Bioseparation, 10 (1-3), 99112.